精英家教网 > 高中数学 > 题目详情
12.机动车驾驶证考试分理论考试和实际操作考试两部分进行,每部分考试成绩只记“合格”与“不合格”,两部分都“合格”者,则机动车驾驶证考试“合格”(并颁发机动车驾驶证).甲、乙、丙三人在理论考试中“合格”的概率依次为$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,在实际操作中“合格”的概率依次为$\frac{1}{2}$,$\frac{2}{3}$,$\frac{5}{6}$,所有考试是否合格相互之间没有影响.
(1)求这3人进行理论与实际操作两项考试后,恰有2人获得(机动车驾驶证)的概率;
(2)用X表示甲、乙、丙三人在理论考试中合格的人数,求X的分布列和数学期望E(X).

分析 (1)记“甲获得《机动车驾驶证》”为事件A《“乙获得《机动车驾驶证》”为事件B,“丙获得《机动车驾驶证》”为事件C,“这3人进行理论与实际操作两项考试后,恰有2人获得(机动车驾驶证)”为事件D,由P(D)=P(AB$\overline{C}$)+P(A$\overline{B}$C)+P($\overline{A}$BC),能求出这3人进行理论与实际操作两项考试后,恰有2人获得(机动车驾驶证)的概率.
(2)由题意得X的可能取值为0,1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X).

解答 解:(1)记“甲获得《机动车驾驶证》”为事件A《“乙获得《机动车驾驶证》”为事件B,
“丙获得《机动车驾驶证》”为事件C,“这3人进行理论与实际操作两项考试后,恰有2人获得(机动车驾驶证)”为事件D,
则P(A)=$\frac{4}{5}×\frac{1}{2}$=$\frac{2}{5}$,P(B)=$\frac{3}{4}×\frac{2}{3}$=$\frac{1}{2}$,P(C)=$\frac{2}{3}×\frac{5}{6}$=$\frac{5}{9}$,
则P(D)=P(AB$\overline{C}$)+P(A$\overline{B}$C)+P($\overline{A}$BC)
=$\frac{2}{5}×\frac{1}{2}×\frac{4}{9}$+$\frac{2}{5}×\frac{1}{2}×\frac{5}{9}$+$\frac{3}{5}×\frac{1}{2}×\frac{5}{9}$=$\frac{11}{30}$.
(2)由题意得X的可能取值为0,1,2,3,
P(X=0)=$\frac{1}{5}×\frac{1}{4}×\frac{1}{3}$=$\frac{1}{60}$,
P(X=1)=$\frac{4}{5}×\frac{1}{4}×\frac{1}{3}+\frac{1}{5}×\frac{3}{4}×\frac{1}{3}$+$\frac{1}{5}×\frac{1}{4}×\frac{2}{3}$=$\frac{9}{60}$,
P(X=2)=$\frac{4}{5}×\frac{3}{4}×\frac{1}{3}$+$\frac{4}{5}×\frac{1}{4}×\frac{2}{3}$+$\frac{1}{5}×\frac{3}{4}×\frac{2}{3}$=$\frac{26}{60}$,
P(X=3)=$\frac{4}{5}×\frac{3}{4}×\frac{2}{3}$=$\frac{24}{60}$,
∴X的分布列为:

 X 0 1 2 3
 P $\frac{1}{60}$ $\frac{9}{60}$ $\frac{26}{60}$ $\frac{24}{60}$
E(X)=$0×\frac{1}{60}+1×\frac{9}{60}+2×\frac{26}{60}+3×\frac{24}{60}$=$\frac{133}{60}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知中心在原点,焦点在x轴上的双曲线C的离心率等于$\frac{3}{2}$,其中一条准线方程为x=$\frac{4}{3}$,则双曲线C的方程是(  )
A.$\frac{x^2}{4}-\frac{y^2}{5}$=1B.$\frac{x^2}{4}-\frac{y^2}{{\sqrt{5}}}$=1C.$\frac{x^2}{2}-\frac{y^2}{{\sqrt{5}}}$=1D.$\frac{x^2}{2}-\frac{y^2}{5}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.安排6志愿者去做3项不同的工作,每项工作需要2人,由于工作需要,A,B二人必须做同一项工作,C,D二人不能做同一项工作,那么不同的安排方案有12种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某班有6位学生与班主任老师毕业前夕留影,要求班主任站在正中间且女生甲、乙不相邻,则排法的种数为(  )
A.96B.432C.480D.528

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某兴趣小组的3名指导老师和7名学生站成前后两排合影,3名指导老师站在前排,7名学生站在后排.
(1)若甲,乙两名学生要站在后排的两端,共有多少种不同的排法?
(2)若甲,乙两名学生不能相邻,共有多少种不同的排法?
(3)在所有老师和学生都排好后,摄影师觉得队形不合适,遂决定从后排7人中抽2人调整到前排.若其他人的相对顺序不变,共有多少种不同的调整方法?
(本题各小题都要求列出算式,并用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD为菱形,且AB=AC=PB=2,O为AC的中点,PO⊥平面ABCD,M为PD的中点.
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)求三棱锥P-MAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.商场为了了解毛衣的月销售量y(件)与月平均气温x(℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如表:
月平均气温x(℃)17 1382
月销售量y(件) 24334055
由表中数据算出线性回归方程$\stackrel{∧}{y}$=-2x+a,气象部门预测下个月的平均气温约为24℃,据此估计该商场下个月毛衣销售量约为10件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.随机变量ξ的概率分布由如表给出:
x 7 8 9 10
 P(ξ=x) 0.3 0.35 0.20.1
则该随机变量ξ的均值是7.7.

查看答案和解析>>

同步练习册答案