精英家教网 > 高中数学 > 题目详情
11.若tanα=2,则$\frac{sinα+cosα}{sinα-cosα}$+cos2α的值为(  )
A.$\frac{7}{4}$B.-$\frac{14}{5}$C.$\frac{16}{5}$D.$\frac{15}{4}$

分析 由条件利用同角三角函数的基本关系,求得要求式子的值.

解答 解:∵tanα=2,则$\frac{sinα+cosα}{sinα-cosα}$+cos2α=$\frac{tanα+1}{tanα-1}$+$\frac{1}{1{+tan}^{2}α}$=$\frac{1+2}{2-1}$+$\frac{1}{5}$=$\frac{16}{5}$,
故选:C.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=lnx-ax(a∈R).
(Ⅰ)若直线y=3x-1是函数f(x)图象的一条切线,求实数a的值;
(Ⅱ)若函数f(x)在[1,e2]上的最大值为1-ae(e为自然对数的底数),求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知定义在R上的函数$f(x)={({\frac{1}{3}})^{|x-t|}}$+2(t∈R)为偶函数,记a=f(-log34),b=f(log25),c=f(2t),a,b,c大小关系为(  )
A.a<b<cB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知M,N分别为椭圆C的左右焦点,P为椭圆C上的点,若椭圆C存在4个点满足条件∠MPN=60°,那么椭圆的离心率取值范围($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在等比数列{an}中,2a4=a6-a5,则公比q=2或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.与圆x2+(y-2)2=2相切,且在两坐标轴上的截距相等的直线方程为y=±x或y=-x+4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在锐角△ABC中,三边a,b,c所对的角分别为A、B、C,已知$a=2\sqrt{3},b=2$,△ABC的面积$S=\sqrt{3}$,则角C 的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线l1是抛物线C:y2=8x的准线,P是C上的一动点,则P到直线l1与直线l2:3x-4y+24=0的距离之和的最小值为(  )
A.$\frac{24}{5}$B.$\frac{26}{5}$C.6D.$\frac{32}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2-$\frac{1}{2}$x+c(a,c∈R)满足条件:①f(1)=0;②对一切x∈R,都有f(x)≥0
(1)求a、c的值;
(2)若存在实数m,使函数g(x)=f(x)-mx在区间[m,m+2]上有最小值-5,求出实数m的值.

查看答案和解析>>

同步练习册答案