精英家教网 > 高中数学 > 题目详情
18.在平面直角坐标系xOy中,以坐标原点O为圆心的圆与直线l:$\sqrt{3}x+y-4=0$相切,且圆O与坐标轴x正半轴交于A,y正半轴交于B,点P为圆O上异于A,B的任意一点.
(Ⅰ)求圆O的方程;
(Ⅱ)求$\overrightarrow{PA}•\overrightarrow{PB}$的最大值及点P的坐标.

分析 (Ⅰ)由点到直线的距离公式求出O到直线$\sqrt{3}x+y-4=0$的距离,即圆的半径,代入圆的标准方程得答案;
(Ⅱ)由圆的方程求出A,B的坐标,设出P的坐标,把$\overrightarrow{PA}•\overrightarrow{PB}$转化为三角函数求最值.

解答 解:(Ⅰ)由点到直线的距离公式可得,圆心O到直线$\sqrt{3}x+y-4=0$的距离r=$\frac{|-4|}{\sqrt{(\sqrt{3})^{2}+{1}^{2}}}=2$.
∴圆O的方程:x2+y2=4;
(Ⅱ)由圆的方程可得A(2,0),B(0,2),
设P(x,y)=(2cosθ,2sinθ)(θ≠0,$\frac{π}{2}$),则
$\overrightarrow{PA}•\overrightarrow{PB}=(2-x,-y)•(-x,2-y)={x^2}-2x+{y^2}-2y$
=4cos2θ-4cosθ+4sin2θ-4sinθ
=$4-4\sqrt{2}sin(θ+\frac{π}{4})$.
∴当θ$+\frac{π}{4}$=$-\frac{π}{2}+2kπ$,即θ=$-\frac{3}{4}π+2kπ$,k∈Z时,
$\overrightarrow{PA}•\overrightarrow{PB}$取得最大值$4+4\sqrt{2}$.

点评 本题考查圆的标准方程,训练了点到直线距离公式的应用,考查利用圆的参数方程求最值,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知一个数列的前n项和为Sn=3n2+2n+5,则它的第n(n≥2)项为(  )
A.3n2B.3n2+3nC.6n+1D.6n-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若关于x的不等式x2-2kx+k>0的解集为R,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设函数f(x)=$\frac{x+2a+3}{{{x^2}+8}}$为奇函数,则实数a=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若直线mx+2ny-4=0(m、n∈R,m≠n)始终平分圆x2+y2-4x-2y-4=0的周长,则mn的取值范围是(  )
A.(0,1)B.(-1,0)C.(-∞,1)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=3tan(4x-1)的最小正周期为(  )
A.$\frac{π}{2}$B.$\frac{π}{4}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=-x-cosx在$[{π,\frac{3π}{2}}]$上的最大值是(  )
A.$\frac{3π}{2}$B.-π-1C.-π+1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设复数z=3-4i(i为虚数单位),则z的共轭复数$\overline z$的虚部是(  )
A.-4B.3C.4D.-4i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.根据下列条件,求双曲线的标准方程.
(1)经过两点$P({-3,2\sqrt{7}})$和$Q({-6\sqrt{2},-7})$;
(2)与双曲线$\frac{x^2}{4}-\frac{y^2}{3}=1$有共同的渐近线,且过点$({2,2\sqrt{3}})$.

查看答案和解析>>

同步练习册答案