精英家教网 > 高中数学 > 题目详情
9.若关于x的不等式x2-2kx+k>0的解集为R,则实数k的取值范围是(0,1).

分析 根据不等式x2-2kx+k>0的解集为R时△<0,
列不等式求解集即可.

解答 解:关于x的不等式x2-2kx+k>0的解集为R,
∴△=4k2-4k<0,
解得0<k<1,
∴实数k的取值范围是(0,1).
故答案为:(0,1).

点评 本题考查了一元二次不等式恒成立的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.2016年袁隆平的超级杂交水稻再创亩产量世界纪录,为了测试水稻生长情况,专家选取了甲、乙两块地,从这两块地中随机各抽取10株水稻样本,测量他们的高度,获得的高度数据的茎叶图如图所示:
(1)根据茎叶图判断哪块田的平均高度较高;
(2)计算甲乙两块地株高方差;
(3)现从乙地高度不低于133cm的样本中随机抽取两株,求高度为136cm的样本被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=-x(x-a)
(1)当a=2时,求函数f(x)单调区间;
(2)求函数f(x)在x∈[-1,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知0<β<$\frac{π}{4}$<α<$\frac{3π}{4}$,cos($\frac{π}{4}$-α)=$\frac{3}{5}$,sin($\frac{3π}{4}$+β)=$\frac{5}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点为F(c,0)且a>b>c>0,设短轴的两端点为D,H,原点O到直线DF的距离为$\frac{\sqrt{3}}{2}$,过原点和x轴不重合的直线与椭圆E相交于C,G两点,且|$\overrightarrow{GF}$|+|$\overrightarrow{CF}$|=4.
(1)求椭圆E的方程;
(2)设O为坐标原点,过点P(0,1)的动直线与椭圆E交于A,B两点,是否存在常数λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值?求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若α的终边在第一、三象限的角平分线上,则$\frac{sinα}{\sqrt{1-si{n}^{2}α}}$+$\frac{\sqrt{1-co{s}^{2}α}}{cosα}$=±2tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求证:
(1)a2+b2+c2≥ab+bc+ac
(2)$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,以坐标原点O为圆心的圆与直线l:$\sqrt{3}x+y-4=0$相切,且圆O与坐标轴x正半轴交于A,y正半轴交于B,点P为圆O上异于A,B的任意一点.
(Ⅰ)求圆O的方程;
(Ⅱ)求$\overrightarrow{PA}•\overrightarrow{PB}$的最大值及点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的通项公式是关于n的一次函数,a3=7,a7=19,则a10的值为(  )
A.26B.28C.30D.32

查看答案和解析>>

同步练习册答案