| A. | 1 | B. | 0 | C. | 1或0 | D. | 1或3 |
分析 由$\left\{\begin{array}{l}{y=kx+2}\\{{y}^{2}=8x}\end{array}\right.$,得(kx+2)2=8x,再由直线y=kx+2与抛物线y2=8x有且只有一个公共点,知△=(4k-8)2-16k2=0,或k2=0,由此能求出k的值.
解答 解:由$\left\{\begin{array}{l}{y=kx+2}\\{{y}^{2}=8x}\end{array}\right.$,得(kx+2)2=8x,
∴k2x2+4kx+4=8x,
整理,得k2x2+(4k-8)x+4=0,
∵直线y=kx+2与抛物线y2=8x有且只有一个公共点,
∴△=(4k-8)2-16k2=0,或k2=0,
解得k=1,或k=0.
故选C.
点评 本题考查直线与抛物线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{13}$ | B. | 2$\sqrt{3}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{1}{2}$ | C. | 5 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6π | B. | 12π | C. | 32π | D. | 36π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com