精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆
x2
9
+
y2
25
=1有公共焦点F1,F2,它们的离心率之和为2
4
5

(1)求双曲线的标准方程;
(2)设P是双曲线与椭圆的一个交点,求cos∠F1PF2
考点:双曲线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)由于椭圆焦点为F(0,±4),离心率为e=
4
5
,可得双曲线的离心率为2,结合双曲线与椭圆
x2
9
+
y2
25
=1有公共焦点F1,F2,求出a,b,c.最后写出双曲线的标准方程;
(2)求出|PF1|=7,|PF2|=3,|F1F2|=8,利用余弦定理,即可求cos∠F1PF2
解答: 解:(1)椭圆
x2
9
+
y2
25
=1的焦点为(0,±4),离心率为e=
4
5

∵双曲线与椭圆的离心率之和为2
4
5

∴双曲线的离心率为2,
c
a
=2
∵双曲线与椭圆
x2
9
+
y2
25
=1有公共焦点F1,F2
∴c=4,
∴a=2,b=
12

∴双曲线的方程是
y2
4
-
x2
12
=1

(2)由题意,|PF1|+|PF2|=10,|PF1|-|PF2|=4
∴|PF1|=7,|PF2|=3,
∵|F1F2|=8,
∴cos∠F1PF2=
72+32-82
2•7•3
=-
1
7
点评:本题考查椭圆双曲线的标准方程,以及简单性质的应用,考查余弦定理,难度中等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

掷一颗质地均匀的骰子,观察所得的点数a,设事件A=“a为3”,B=“a为4”,C=“a为奇数”,则下列结论正确是(  )
A、A与B为互斥事件
B、A与B为对立事件
C、A与C为对立事件
D、A与C为互斥事件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,且Sn-1+
1
Sn
+2=0(n≥2).
(1)写出S1,S2,S3,S4.(不用写求解过程)
(2)猜想Sn的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,a2=2,且an+2=(2+cosnπ)(an-1)+3,n∈N*
(1)求通项公式an
(2)求数列的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图甲正三角形ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,先将△ABC沿CD折叠成直二面角A-DC-B(如图乙),在乙图中:
(Ⅰ)求二面角E-DF-C的余弦值;
(Ⅱ)在线段BC上找一点P,使AP⊥DE,并求BP.
(Ⅲ)求三棱锥D-ABC外接球的表面积.(只需用数字回答,可不写过程)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a2=5,a4+a6=22,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=
1
an2-1
(n∈N*)
,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为d(d∈Z),前n项的和为Sn,且a3=20,185<S7<195.
(1)求数列{an}的通项公式.
(2)记bn=
1
anan+1
,{bn}的前n项的和为Tn,求证:Tn
1
42

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定点F1(-
3
,0),F2(
3
,0)
,曲线C是使|RF1|+|RF2|为定值的点R的轨迹,曲线C过点T(0,1).
(1)求曲线C的方程;
(2)直线l过点F2,且与曲线C交于PQ,当△F1PQ的面积取得最大值时,求直线l的方程;
(3)设点P是曲线C上除长轴端点外的任一点,连接PF1、PF2,设∠F1PF2的角平分线PM交曲线C的长轴于点M(m,0),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边
(1)若△ABC面积S△ABC=
3
2
,c=2,A=60°,求a、b的值;
(2)若
a
c
<cosB,试判断△ABC的形状.

查看答案和解析>>

同步练习册答案