精英家教网 > 高中数学 > 题目详情
精英家教网已知椭圆
x2
a2
+y2=1(a≥2),直线l与椭圆交于A、B两点,M是线段AB的中点,连接OM并延长交椭圆于点C.
(Ⅰ)设直线AB与直线OM的斜率分别为k1、k2,且k1•k2=-
1
2
,求椭圆的离心率.
(Ⅱ)若直线AB经过椭圆的右焦点F,且四边形OACB是平行四边形,求直线AB斜率的取值范围.
分析:(1)设A(x1,y1),B(x2,y2),C(x3,y3),则
x12
a2
+y12=1
x22
a2
+y22=1
(x1+x2)(x1-x2)
a2
+(y1+y2)(y1-y2)=0

x3=
x1+x2
2
y3=
y1+y2
2
k1=
y1-y2
x1-x2
k2=
y3
x3
,再由k1•k2=-
1
2
能导出椭圆的离心率.
(2)由n=c,可知C(
2a2c
m2+a2
,-
2mc
m2+a2
),代入椭圆方程,得4c2=m2+a2.由kAB2=
1
m2
=
1
3a2-4
1
8
,能导出k∈[-
2
4
,0)∪(0,
2
4
]
解答:解:(1)设A(x1,y1),B(x2,y2),C(x3,y3),则
x12
a2
+y12=1
x22
a2
+y22=1
,两式相减,得:
(x1+x2)(x1-x2)
a2
+(y1+y2)(y1-y2)=0

x3=
x1+x2
2
y3=
y1+y2
2
k1=
y1-y2
x1-x2
k2=
y3
x3

可得k2k1=-
1
a2
=-
1
2

a2=2,e=
2
2
.(5分)
(2)由n=c,可知C(
2a2c
m2+a2
,-
2mc
m2+a2
),代入椭圆方程,得
4c2=m2+a2.(10分)
又c2=a2-1,a≥2,m≠0,
kAB2=
1
m2
=
1
3a2-4
1
8

∴k∈[-
2
4
,0)∪(0,
2
4
]
.(12分)
点评:本题考查椭圆的离心率的求法和直线的取值范围的求法.解题时要认真审题,注意椭圆性质的灵活运用,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
1
2

(Ⅰ)求椭圆的标准方程,
(Ⅱ)若P是椭圆上的任意一点,求
PF1
PA
的取值范围
(III)直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的顶点),AH⊥MN垂足为H且
AH
2
=
MH
HN
,求证:直线l恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点F(-c,0)是长轴的一个四等分点,点A、B分别为椭圆的左、右顶点,过点F且不与y轴垂直的直线l交椭圆于C、D两点,记直线AD、BC的斜率分别为k1,k2
(1)当点D到两焦点的距离之和为4,直线l⊥x轴时,求k1:k2的值;
(2)求k1:k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率是
3
2
,且经过点M(2,1),直线y=
1
2
x+m(m<0)
与椭圆相交于A,B两点.
(1)求椭圆的方程;
(2)当m=-1时,求△MAB的面积;
(3)求△MAB的内心的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•威海二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
6
3
,过右焦点做垂直于x轴的直线与椭圆相交于两点,且两交点与椭圆的左焦点及右顶点构成的四边形面积为
2
6
3
+2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设点M(0,2),直线l:y=1,过M任作一条不与y轴重合的直线与椭圆相交于A、B两点,若N为AB的中点,D为N在直线l上的射影,AB的中垂线与y轴交于点P.求证:
ND
MP
AB
2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点为F,过F作y轴的平行线交椭圆于M、N两点,若|MN|=3,且椭圆离心率是方程2x2-5x+2=0的根,求椭圆方程.

查看答案和解析>>

同步练习册答案