精英家教网 > 高中数学 > 题目详情
6.若命题“存在x∈R,使得2x2-3ax+9<0成立”为假命题,则实数a的取值范围是[-2$\sqrt{2}$,2$\sqrt{2}$].

分析 将条件转化为2x2-3ax+9≥0恒成立,通过△=9a2-72≤0,从而解出实数a的取值范围.

解答 解:命题“?x∈R,使2x2-3ax+9<0成立”是假命题,
即“2x2-3ax+9≥0恒成立”是真命题.
△=9a2-72≤0,解得-2$\sqrt{2}$≤a≤2$\sqrt{2}$,
故答案为:[-2$\sqrt{2}$,2$\sqrt{2}$]

点评 本题考查一元二次不等式的应用,注意联系对应的二次函数的图象特征,体现了等价转化数学思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)为R上的减函数,则满足$f({(\frac{1}{2})^x})$>f(1)的实数x的取值范围是(  )
A.(-∞,0)B.(0,+∞)C.(0,1)∪(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如下2×2列联表:
偏爱蔬菜偏爱肉类合计
50岁以下4812
50岁以上16218
合计201030
则可以说其亲属的饮食习惯与年龄有关的把握为(  )
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数f(x)=lnx+x+$\frac{2}{x}$-1在点(2,f(2))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)的定义域为[0,3],则f(x2-1)的定义域为(  )
A.[0,9]B.[0,8]C.[-2,-1]∪[1,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设集合A={0,1},则满足A∪B={0,1,2}的集合B的个数是:4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆M过两点C(1,-1),D(-1,1)且圆心M在x+y-2=0上,则圆M的方程为(x-1)2+(y-1)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.把直线y=$\sqrt{3}$x-$\sqrt{3}$+1绕点(1,1)顺时针旋转,使它与圆x2+y2-2x=0相切,则直线转动的最小正角是30°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在直棱柱ABC-A1B1C1中,AB=AC=2,AA1=BC=2$\sqrt{3}$,E是AA1的中点,则BE与平面B1CE所成角的正弦值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案