精英家教网 > 高中数学 > 题目详情
18.已知圆M过两点C(1,-1),D(-1,1)且圆心M在x+y-2=0上,则圆M的方程为(x-1)2+(y-1)2=4.

分析 设出圆的标准方程,利用圆M过两点C(1,-1)、D(-1,1)且圆心M在直线x+y-2=0上,建立方程组,即可求圆M的方程

解答 解:设圆M的方程为:(x-a)2+(y-b)2=r2(r>0),
根据题意得$\left\{\begin{array}{l}{(1-a)^{2}+(-1-b)^{2}={r}^{2}}\\{(-1-a)^{2}+(1-b)^{2}={r}^{2}}\\{a+b-2=0}\end{array}\right.$,解得:a=b=1,r=2,
故所求圆M的方程为:(x-1)2+(y-1)2=4.
故答案为:(x-1)2+(y-1)2=4.

点评 本题考查圆的标准方程,考查学生分析解决问题的能力,确定圆心与半径是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≥2}\\{2x+y≤4}\\{4x-y≥-1}\end{array}\right.$,则目标函数z=3|x|+|y-3|的取值范围是[$\frac{3}{2},9$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.计算i+i2+i3+…i2015=(  )
A.1B.iC.-iD.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若命题“存在x∈R,使得2x2-3ax+9<0成立”为假命题,则实数a的取值范围是[-2$\sqrt{2}$,2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.求“方程3x+4x=5x的解”有如下解题思路:设$f(x)={(\frac{3}{5})^x}+{(\frac{4}{5})^x}$,则f(x)在R上单调递减,且f(2)=1,所以原方程有唯一解x=2.类比上述解题思路,方程${x^3}+x=\frac{1}{x^3}+\frac{1}{x}$的解为-1或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.等差数列{an}中a3+a5=12,a2=2,则前6项的和S6=30.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=sin(2ωx-$\frac{π}{6}$),将其图象向左平移$\frac{π}{4}$个单位,得到函数g(x)的图象,且函数g(x)的图象关于y轴对称,若ω是使得该变换成立的最小正数,则ω的值为(  )
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.定义在R上的可导函数f(x),且f(x)图象连续不断,f′(x)是f(x)的导数,当x≠0时,f′(x)+$\frac{f(x)}{x}$>0,则哈数g(x)=f(x)+$\frac{1}{x}$的零点的个数(  )
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=λsinx+cosx图象的一条对称轴方程为x=$\frac{π}{6}$,则此函数的最大值为$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

同步练习册答案