精英家教网 > 高中数学 > 题目详情
12.已知命题p:?x∈R,x2+(a-1)x+1≥0成立,命题q:?x0∈R,ax${\;}_{0}^{2}$-2ax0-3>0不成立,若p假q 真.求实数a的取值范围.

分析 求出命题p,q为真命题时,a的范围,据p假q真.求实数a的取值范围.

解答 解:命题p:?x∈R,x2+(a-1)x+1≥0成立,则△≤0,可得-1≤a≤3;
命题q:?x0∈R,ax${\;}_{0}^{2}$-2ax0-3>0不成立,则ax2-2ax-3≤0恒成立,∴a=0或$\left\{\begin{array}{l}{a<0}\\{4{a}^{2}+12a≤0}\end{array}\right.$,∴-3≤a≤0.
∵p假q真,
∴$\left\{\begin{array}{l}{a<-1或a>3}\\{-3≤a≤0}\end{array}\right.$,
∴-3≤a<-1.

点评 本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数y=ln(x2-x-2)的定义域是(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(x)=x(x-1)(x-2)…(x-n)(n∈N+),求f′(0)及f(n+1)(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知sin(3π+α)=2cos(α-4π),求$\frac{cos(\frac{π}{2}-α)+5sin(\frac{π}{2}+α)}{2cos(π+α)-sin(-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.过抛物线y2=2px(p>0)的焦点的一条直线与它交于P,Q两点,过点P和此抛物线顶点的直线与准线交于点M.求证直线MQ平行于此抛物线的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=ax3+bx+4(a,b∈R),f(lg(log210))=5,则f(lg(lg2))=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某高校专家楼前现有一块矩形草坪ABCD,已知草坪长AB=100米,宽BC=50$\sqrt{3}$米,为了便于专家平时工作、起居,该高校计划在这块草坪内铺设三条小路HE、HF和EF,并要求H是CD的中点,点E在边BC上,点F在边AD上,且∠EHF为直角,如图所示.
(Ⅰ)设∠CHE=x(弧度),试将三条路的全长(即△HEF的周长)L表示成x的函数,并求出此函数的定义域;
(Ⅱ)这三条路,每米铺设预算费用均为400元,试问如何设计才能使铺路的总费用最低?并求出最低总费用(结果保留整数)(可能用到的参考值:$\sqrt{3}$取1.732,$\sqrt{2}$取1.414).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=3x-1+$\frac{k}{3^x}$为偶函数,则实数k的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数$y=\frac{{{{(x-1)}^0}}}{{\sqrt{|x|+x}}}$的定义域是(  )
A.(0,+∞)B.(0,1)∪(1,+∞)C.(-∞,0)D.(-∞,-1)∪(0,+∞)

查看答案和解析>>

同步练习册答案