精英家教网 > 高中数学 > 题目详情
18.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°
(1)若$\overrightarrow{a}$⊥($\overrightarrow{a}$+k$\overrightarrow{b}$),求k的值;
(2)求|$\overrightarrow{a}$+2$\overrightarrow{b}$|的值.

分析 (1)令$\overrightarrow{a}$•($\overrightarrow{a}$+k$\overrightarrow{b}$)=0解出k;
(2)求出|$\overrightarrow{a}$+2$\overrightarrow{b}$|2,然后开方即可.

解答 解:(1)$\overrightarrow{a}•\overrightarrow{b}$=4×3×cos120°=-6.
∵$\overrightarrow{a}$⊥($\overrightarrow{a}$+k$\overrightarrow{b}$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$+k$\overrightarrow{b}$)=${\overrightarrow{a}}^{2}$+k$\overrightarrow{a}•\overrightarrow{b}$=0,即16-6k=0,
解得k=$\frac{8}{3}$.
(2)($\overrightarrow{a}+2\overrightarrow{b}$)2=${\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}$=16-24+36=28.
∴|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{28}=2\sqrt{7}$.

点评 本题考查了平面向量的数量级运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)=f(x)-kx有(  )
A.2个零点B.3个极值点C.2个极大值点D.3个极大值点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于锐角α,若sin(α-$\frac{π}{6}$)=$\frac{1}{3}$,则cos(α-$\frac{π}{3}$)=(  )
A.$\frac{2\sqrt{6}+1}{6}$B.$\frac{3-\sqrt{2}}{8}$C.$\frac{3+\sqrt{2}}{8}$D.$\frac{2\sqrt{3}-1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,角A、B、C所对的边分别为a、b、c,且满足cos2B+$\frac{\sqrt{3}}{2}$sin2B=1,0<B<$\frac{π}{2}$,若b=3,则a+c的取值范围为(3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=2x3-3x2-24x+12,求f($\frac{1}{2013}$)+f($\frac{2}{2013}$)+…+f($\frac{2012}{2013}$)+f($\frac{2013}{2013}$)=-1019.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正方形ABCD的边长为2,E,F分别是CD,AD中点,则$\overrightarrow{AE}$•$\overrightarrow{CF}$=(  )
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求由方程ex+y-sinxy=3确定的函数y对x的导数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设双曲线$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1的一条渐近线为y=-2x,且一个焦点与抛物线x2=4y的焦点相同,则此双曲线的方程为(  )
A.$\frac{5}{4}$x2-5y2=1B.5y2-$\frac{5}{4}$x2=1C.$\frac{5}{4}$y2-5x2=1D.5x2-$\frac{5}{4}$y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线实轴长为6,一条渐近线方程为4x-3y=0.过双曲线的右焦点F作倾斜角为$\frac{π}{4}$的直线交双曲线于A、B两点
(1)求双曲线的方程;
(2)求线段AB的中点C到焦点F的距离.

查看答案和解析>>

同步练习册答案