分析 先求出f(x)+f(1-x)=-1,由此能求出f($\frac{1}{2013}$)+f($\frac{2}{2013}$)+…+f($\frac{2012}{2013}$)+f($\frac{2013}{2013}$)的值.
解答 解:∵函数f(x)=2x3-3x2-24x+12,
∴f(x)+f(1-x)=2x3-3x2-24x+12+2(1-x)3-3(1-x)2-24(1-x)+12
=2x3-3x2-24x+12-2x3+6x2-6x+2-3x2+6x-3-24+24x+12=-1
∴f($\frac{1}{2013}$)+f($\frac{2}{2013}$)+…+f($\frac{2012}{2013}$)+f($\frac{2013}{2013}$)
=1006[$f(\frac{1}{2013})$+f($\frac{2012}{2013}$)]+f(1)
=-1006+2-3-24+12
=-1019.
故答案为:-1019.
点评 本题考查函数值的求法,是中档题,解题时要认真审题,正确解题的关键是推导出f(x)+f(1-x)=-1.
科目:高中数学 来源: 题型:选择题
| A. | a≥3 | B. | a≤3 | C. | a<3 | D. | a>3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\sqrt{2}$ | B. | -$\frac{12}{5}$ | C. | -2 | D. | -$\frac{5}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com