精英家教网 > 高中数学 > 题目详情
5.过抛物线y2=4x的焦点F作倾斜角为45°的直线交抛物线于A、B两点,则线段AB的长为8.

分析 根据抛物线解析式确定出焦点F坐标,根据直线AB倾斜角表示出直线AB方程,与抛物线解析式联立消去y得到关于x的一元二次方程,设方程的两根为x1,x2,即A(x1,y1),B(x2,y2),利用根与系数关系及两点间的距离公式求出AB长即可.

解答 解:由题意得:抛物线y2=4x的焦点F为(1,0),
∵直线AB倾斜角为45°,
∴直线AB的斜率为1,即方程为y=x-1,
联立得:$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=x-1}\end{array}\right.$,
消去y得:(x-1)2=4x,即x2-6x+1=0,
设方程的两根为x1,x2,即A(x1,y1),B(x2,y2),
则有x1+x2=6,x1x2=1,
则|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+{(y}_{1}-{y}_{2})^{2}}$=$\sqrt{2}$×$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$×$\sqrt{36-4}$=$\sqrt{2}$×$\sqrt{32}$=$\sqrt{64}$=8,
故答案为:8

点评 此题考查了抛物线的简单性质,根与系数关系,两点间的距离公式,以及直线的点斜式方程,熟练掌握抛物线的简单性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=2x3-3x2-24x+12,求f($\frac{1}{2013}$)+f($\frac{2}{2013}$)+…+f($\frac{2012}{2013}$)+f($\frac{2013}{2013}$)=-1019.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设O为坐标原点,F1,F2是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的焦点,若在双曲线上存在点M,满足∠F1MF2=60°,|OM|=2a,则该双曲线的渐近线方程为(  )
A.x±2y=0B.2x±y=0C.x±y=0D.$\sqrt{2}x±y=0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某班共有15人参加数学和物理课外兴趣小组,其中只参加数学兴趣小组的有5人,两个小组都参加的有4人,则只参加物理兴趣小组的有6人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.四棱锥E-ABCD中,AD∥BC,AD=AE=2BC=2AB=2,AB⊥AD,平面EAD⊥平面ABCD,点F为DE的中点.
(Ⅰ)求证:CF∥平面EAB;
(Ⅱ)若CF⊥AD,求四棱锥E-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知双曲线实轴长为6,一条渐近线方程为4x-3y=0.过双曲线的右焦点F作倾斜角为$\frac{π}{4}$的直线交双曲线于A、B两点
(1)求双曲线的方程;
(2)求线段AB的中点C到焦点F的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)求与椭圆$\frac{x^2}{16}+\frac{y^2}{9}=1$有相同的焦点,且经过点(4,3)的椭圆的标准方程.
(2)求与双曲线$\frac{x^2}{4}-\frac{y^2}{9}=1$有相同的渐近线,且焦距为$2\sqrt{13}$的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的右焦点F,且斜率为2的直线l与双曲线的相交于点A,B,若弦AB的中点横坐标取值范围为(2c,4c),则该双曲线的离心率的取值范围是(  )
A.(3,4)B.(2,3)C.$(\sqrt{3},4)$D.$(\sqrt{3},2)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出下列四个命题:①若α、β∈(0,$\frac{π}{2}$)且α<β,则sinα>sinβ;②若α∈(0,$\frac{π}{4}$),则cosα>sinα;③若α∈(0,$\frac{π}{2}$),则sinα+cosα>1;④若α∈(0,$\frac{π}{2}$),则sinα<α<tanα,以上四个命题中真命题的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案