分析 根据抛物线解析式确定出焦点F坐标,根据直线AB倾斜角表示出直线AB方程,与抛物线解析式联立消去y得到关于x的一元二次方程,设方程的两根为x1,x2,即A(x1,y1),B(x2,y2),利用根与系数关系及两点间的距离公式求出AB长即可.
解答 解:由题意得:抛物线y2=4x的焦点F为(1,0),
∵直线AB倾斜角为45°,
∴直线AB的斜率为1,即方程为y=x-1,
联立得:$\left\{\begin{array}{l}{{y}^{2}=4x}\\{y=x-1}\end{array}\right.$,
消去y得:(x-1)2=4x,即x2-6x+1=0,
设方程的两根为x1,x2,即A(x1,y1),B(x2,y2),
则有x1+x2=6,x1x2=1,
则|AB|=$\sqrt{({x}_{1}-{x}_{2})^{2}+{(y}_{1}-{y}_{2})^{2}}$=$\sqrt{2}$×$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$×$\sqrt{36-4}$=$\sqrt{2}$×$\sqrt{32}$=$\sqrt{64}$=8,
故答案为:8
点评 此题考查了抛物线的简单性质,根与系数关系,两点间的距离公式,以及直线的点斜式方程,熟练掌握抛物线的简单性质是解本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x±2y=0 | B. | 2x±y=0 | C. | x±y=0 | D. | $\sqrt{2}x±y=0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (3,4) | B. | (2,3) | C. | $(\sqrt{3},4)$ | D. | $(\sqrt{3},2)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com