分析 (1)根据题意,函数的最值可以确定A,根据在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值-3,可以确定函数的周期,从而求出ω的值和φ的值,从而求得函数的解析式;
(2)令 2kπ-$\frac{π}{2}$≤$\frac{1}{5}$x+$\frac{3π}{10}$≤2kπ+$\frac{π}{2}$,解此不等式,即可求得函数的单调递增区间;
解答 解:(1)∵当x=π时,y有最大值3,当x=6π时,y有最小值-3.
∴A=$\frac{1}{2}$[3-(-3)]=3,$\frac{T}{2}$=5π,
∴T=10π=$\frac{2π}{ω}$,
∴ω=$\frac{2π}{10π}$=$\frac{1}{5}$,
∵当x=π时,y有最大值3,
∴$\frac{1}{5}$π+φ=$\frac{π}{2}$,
∴φ=$\frac{3π}{10}$,
∴y=3sin($\frac{1}{5}$x+$\frac{3π}{10}$),
(2)令 2kπ-$\frac{π}{2}$≤$\frac{1}{5}$x+$\frac{3π}{10}$≤2kπ+$\frac{π}{2}$,k∈Z,
得:10kπ-4π≤x≤10kπ+π,k∈Z,
故函数的单调递增区间为:{x|10kπ-4π≤x≤10kπ+π k∈Z}.
点评 本题考查根据y=Asin(ωx+φ)的图象求函数的解析式以及求函数的单调区间,考查灵活应用知识分析解决问题的能力和运算能力,体现了数形结合的数学思想方法,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com