分析 (I)证法一:如图所示,连接DG,CD,设CD∩GF=M,连接MH.由已知可得四边形CFDG是平行四边形,DM=MC.利用三角形的中位线定理可得:MH∥BD,可得BD∥平面FGH;
证法二:在三棱台DEF-ABC中,AB=2DE,H为BC的中点.可得四边形BHFE为平行四边形.BE∥HF.又GH∥AB,可得平面FGH∥平面ABED,即可证明BD∥平面FGH.
(II)连接HE,利用三角形中位线定理可得GH∥AB,于是GH⊥BC.可证明EFCH是平行四边形,可得HE⊥BC.因此BC⊥平面EGH,即可证明平面BCD⊥平面EGH.
解答 (I)证法一:如图所示,连接DG,CD,设CD∩GF=M,连接MH.![]()
在三棱台DEF-ABC中,AB=2DE,G为AC的中点.
∴DF平行且等于GC,∴四边形CFDG是平行四边形,
∴DM=MC.又BH=HC,
∴MH∥BD,又BD?平面FGH,MH?平面FGH,
∴BD∥平面FGH;
证法二:在三棱台DEF-ABC中,AB=2DE,H为BC的中点.
∴BH平行且等于EF,
∴四边形BHFE为平行四边形.
∴BE∥HF.
在△ABC中,G为AC的中点,H为BC的中点,
∴GH∥AB,又GH∩HF=H,
∴平面FGH∥平面ABED,
∵BD?平面ABED,∴BD∥平面FGH.
(II)证明:连接HE,∵G,H分别为AC,BC的中点,
∴GH∥AB,
∵AB⊥BC,∴GH⊥BC,
又H为BC的中点,∴EF∥HC,EF=HC.
∴EFCH是平行四边形,∴CF∥HE.
∵CF⊥BC,∴HE⊥BC.
又HE,GH?平面EGH,HE∩GH=H,
∴BC⊥平面EGH,又BC?平面BCD,
∴平面BCD⊥平面EGH.
点评 本题考查了空间线面面面平行与垂直的判定及性质定理、三角形中位线定理、平行四边形的判定与性质定理,考查了空间想象能力、推理能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{15}{4}$ | B. | -$\frac{3}{8}$ | C. | $\frac{15}{4}$ | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com