精英家教网 > 高中数学 > 题目详情
13.在△ABC中,c=$\sqrt{6}$,C=$\frac{π}{3}$,a=2,求A,B,b.

分析 利用余弦定理建立方程,求出b,利用正弦定理,求出A,即可得出B.

解答 解:在△ABC中,由余弦定理可得:c2=b2+a2-2bacosC,
∴6=b2+4-2b,
化为:b2-2b-2=0,
∵b>0,
∴解得:b=1+$\sqrt{3}$.
由正弦定理可得$\frac{2}{sinA}=\frac{\sqrt{6}}{\frac{\sqrt{3}}{2}}$,
∴sinA=$\frac{\sqrt{2}}{2}$,
∵c>a,
∴A=$\frac{π}{4}$.
∴B=$\frac{5π}{12}$.

点评 本题考查了正弦定理、余弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.给定集合A、B,定义:A*B={x|x∈B或x∈A,但x∉A∩B},又已知A={0,1,2},B={1,2,3},则A*B=(  )
A.{0,1}B.{0,2}C.{0,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若变量x,y满足约束条件$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 2x-y≤2\end{array}$,
(1)求目标函数z=$\sqrt{{x^2}+{y^2}}$的最大值和最小值;
(2)若目标函数z=ax+2y仅在点(1,0)处取得最小值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知A,B两点的坐标分别为(0,4),(4,6),则以AB为直径的圆的标准方程为(x-2)2+(y-5)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.
(Ⅰ)求证:BD∥平面FGH.
(Ⅱ)若CF⊥BC,AB⊥BC,求证:BCD⊥EGH.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.袋中有3个黑球,3个红球,小球的形状大小质地完全一样
(Ⅰ)若无放回地任取3球时,求至少取得一个红球的概率;
(Ⅱ)若有放回地连续抽3次,每次取1球时,求取到红球数X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\underset{lim}{n→∞}$$\frac{5{n}^{2}-2}{(n-3)(n+1)}$=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合M={-1,0,1,2},N={0,2,4,6},则M∩N=(  )
A.{-1,1,6}B.{-1,1}C.{-1,0,1,2,4,6}D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义域为R的奇函数f(x)是减函数,当f(a)+f(a2)>0成立时,实数a的取值范围是(  )
A.a<-1或a>0B.-1<a<0C.a<0或a>1D.a<-1或a>1

查看答案和解析>>

同步练习册答案