精英家教网 > 高中数学 > 题目详情
2.已知a,b,c分别是△ABC的内角A,B,C所对的边,a=2bcosB,b≠c.
(1)证明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

分析 (1)由正弦定理和正弦函数的性质,即可证明A=2B成立;
(2)由余弦定理和正弦、余弦函数的性质,化简求值即可.

解答 解:(1)证明:△ABC中,a=2bcosB,
由$\frac{a}{sinA}=\frac{b}{sinB}$,得sinA=2sinBcosB=sin2B,
∵0<A,B<π,
∴sinA=sin2B>0,
∴0<2B<π,
∴A=2B或A+2B=π,
若A+2B=π,则B=C,b=c这与“b≠c”矛盾,
∴A+2B≠π;
∴A=2B;
(2)∵a2+c2=b2+2acsinC,
∴$\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=sinC$,
由余弦定理得cosB=sinC,
∵0<B,C<π,
∴$C=\frac{π}{2}-B$或$C=\frac{π}{2}+B$,
①当$C=\frac{π}{2}-B$时,则$A=\frac{π}{2},B=C=\frac{π}{4}$,
这与“b≠c”矛盾,∴$A≠\frac{π}{2}$;
②当$C=\frac{π}{2}+B$时,由(1)得A=2B,
∴$A+B+C=A+2B+\frac{π}{2}=2A+\frac{π}{2}=π$,
∴$A=\frac{π}{4}$.

点评 本题考查了正弦、余弦定理和正弦、余弦函数的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}前n项和为Sn,a1=-2,且满足Sn=$\frac{1}{2}$an+1+n+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log3(-an+1),求数列{$\frac{1}{{{b}_{n}b}_{n+2}}$}前n项和为Tn,求证Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的前n项和为Sn,且Sn=n-5an+23,n∈N*,则数列{an}的通项公式an=(  )
A.$3×{(\frac{5}{6})^{n-1}}-1$B.$3×{(\frac{5}{6})^n}-1$C.$3×{(\frac{5}{6})^{n-1}}+1$D.$3×{(\frac{5}{6})^n}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,过点M(0,1)的椭圆 Γ:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$
(1)求椭圆 Γ的方程;
(2)已知直线l不过点M,与椭圆 Γ相交于P,Q两点,若△MPQ的外接圆是以PQ为直径,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{7π}{3}$B.$8+\frac{π}{3}$C.$({4+\sqrt{2}})π$D.$({5+\sqrt{2}})π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD相交于点F.若AB=2,$AD=\sqrt{2}$,∠BAD=45°,则$\overrightarrow{AF}•\overrightarrow{BE}$=(  )
A.$\frac{1}{2}$B.1C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的公比q>1,且a1+a3=20,a2=8.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{n}{a_n}$,Sn是数列{bn}的前n项和,不等式${S_n}+\frac{n}{{{2^{n+1}}}}>{(-1)^n}•a$对任意正整数n恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等比数列{an}中,已知${a_2}=\frac{1}{2}\;,\;\;{a_5}=4$,则此数列的公式比为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量,成本和售价如下表:
 年产量/亩年种植成本/亩 每吨售价 
 黄瓜 4吨 1.2万元 0.55万元
 韭菜6吨  0.9万元 0.3万元
分别用x,y表示黄瓜和韭菜的种植面积(单位:亩)
(Ⅰ)用x,y列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别种植黄瓜和韭菜各对少亩能够使一年的种植总利润(总利润=总销售收入-总种植成本)最大?并求出此最大利润.

查看答案和解析>>

同步练习册答案