精英家教网 > 高中数学 > 题目详情
10.在平面直角坐标系xOy中,过点M(0,1)的椭圆 Γ:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$
(1)求椭圆 Γ的方程;
(2)已知直线l不过点M,与椭圆 Γ相交于P,Q两点,若△MPQ的外接圆是以PQ为直径,求证:直线l过定点,并求出该定点的坐标.

分析 (1)由过点M(0,1)的椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,得到a,b,c的方程组,解方程组求出a,b,由此能求出椭圆方程.
(2)△MPQ的外接圆以PQ为直径,可得到MP⊥MQ,设直线MP方程,代入椭圆方程,求出点P的坐标,同理求出Q点坐标,从而求出直线PQ的方程,即可求出直线PQ过定点的坐标.

解答 解:(1)∵过点M(0,1)的椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,
∴$\left\{\begin{array}{l}{b=1}\\{\frac{c}{a}=\frac{\sqrt{6}}{3}}\\{{c}^{2}={a}^{2}-{b}^{2}}\end{array}\right.$,解得a2=3,b=1,
∴椭圆 Γ的方程为$\frac{{x}^{2}}{3}+{y}^{2}=1$.
(2)证明:∵△MPQ外接圆是以PQ为直径,故MP⊥MQ,
∴直线MP与坐标轴不垂直,
由M(0,1)可设直线MP的方程为y=kx+1,直线MQ的方程为y=-$\frac{1}{k}x+1$(k≠0),
将y=kx+1代入椭圆Γ的方程$\frac{{x}^{2}}{3}+{y}^{2}=1$,
整理,得;(1+3k2)x2+6kx=1,
解得x=0,或x=-$\frac{6k}{1+3{k}^{2}}$,
∴P(-$\frac{6k}{1+3{k}^{2}}$,-$\frac{6{k}^{2}}{1+3{k}^{2}}$+1),即P(-$\frac{6k}{1+3{k}^{2}}$,$\frac{1-3{k}^{2}}{1+3{k}^{2}}$),
同理,求得Q($\frac{6k}{{k}^{2}+3}$,$\frac{{k}^{2}-3}{{k}^{2}+3}$),
∴直线l的方程为y=$\frac{\frac{{k}^{2}-3}{{k}^{2}+3}-\frac{1-3{k}^{2}}{1+3{k}^{2}}}{\frac{6k}{{k}^{2}+3}+\frac{6k}{1+3{k}^{2}}}$(x-$\frac{6k}{{k}^{2}+3}$)+$\frac{{k}^{2}-3}{{k}^{2}+3}$,
化简,得直线l的方程为y=$\frac{{k}^{2}-1}{4k}x-\frac{1}{2}$,
∴直线l过定点(0,-$\frac{1}{2}$).

点评 本题主要考查椭圆的概念和性质,直线和椭圆的位置关系,圆的性质等知识,意在考查转化和化归思想,数形结合思想和学生的运算求解能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.函数$f(x)=(sinx+\sqrt{3}cosx)(cosx-\sqrt{3}sinx)$的最小正周期是(  )
A.$\frac{π}{2}$B.πC.$\frac{3π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.以40km/h向北偏东30°航行的科学探测船上释放了一个探测气球,气球顺风向正东飘去,3min后气球上升到1km处,从探测船上观察气球,仰角为30°,求气球的水平飘移速度是20km/h.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.连续掷两次骰子,以先后得到的点数m,n为点P的坐标(m,n),那么点P在圆x2+y2=17内部(不包括边界)的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{6}$C.$\frac{5}{18}$D.$\frac{2}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.$\frac{sin10°}{1-\sqrt{3}tan10°}$=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xoy中,曲线C的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=2+2sinθ\end{array}\right.$(θ为参数),直线l的参数方程为$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)以坐标原点O为极点,x轴的正半轴为极轴的极坐标系.
(1)写出直线l的普通方程以及曲线C的极坐标方程;
(2)若直线l与曲线C的两个交点分别为M,N,直线l与x轴的交点为P,求|PM|•|PN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a,b,c分别是△ABC的内角A,B,C所对的边,a=2bcosB,b≠c.
(1)证明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}是公差不为0的等差数列,且a1,a4,a5恰为某等比数列的前三项,那么该等比数列公比的值 为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义域为R的函数f(x)满足:当x∈(-1,1]时,f(x)=$\left\{\begin{array}{l}{-\frac{x}{x+1},-1<x≤0}\\{{2}^{2-x}-2,0<x≤1}\end{array}\right.$且f(x+2)=f(x)对任意的x∈R恒成立.若函数g(x)=f(x)-m(x+1)在区间[-1,5]内有6个零点,则实数m的取值范围是[$\frac{2}{5}$,$\frac{2}{3}$).

查看答案和解析>>

同步练习册答案