15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=2+2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵ£®
£¨1£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌÒÔ¼°ÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßCµÄÁ½¸ö½»µã·Ö±ðΪM£¬N£¬Ö±ÏßlÓëxÖáµÄ½»µãΪP£¬Çó|PM|•|PN|µÄÖµ£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£®ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=2+2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®°Ñ¦Ñ2=x2+y2£¬y=¦Ñsin¦È£¬¿ÉµÃCµÄ¼«×ø±ê·½³Ì£®
£¨II£©P£¨1£¬0£©£®°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄ·½³ÌΪ£º${t}^{2}-3\sqrt{2}t$+1=0£¬|PM|•|PN|=|t1•t2|£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃ£ºx+y-1=0£®
ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=2+2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£ºx2+£¨y-2£©2=4£®
°Ñ¦Ñ2=x2+y2£¬y=¦Ñsin¦È£¬¿ÉµÃCµÄ¼«×ø±ê·½³ÌΪ£º¦Ñ=4sin¦È£®
£¨II£©P£¨1£¬0£©£®°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄ·½³ÌΪ£º${t}^{2}-3\sqrt{2}t$+1=0£¬
t1+t2=3$\sqrt{2}$£¬t1•t2=1£¬
¡à|PM|•|PN|=|t1•t2|=1£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³ÌµÄÓ¦ÓᢲÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=alnx-$\frac{1}{2}{x^2}$+bx´æÔÚ¼«Ð¡Öµ£¬ÔòÓУ¨¡¡¡¡£©
A£®a£¼0£¬b£¾0B£®a£¾0£¬b£¾0C£®a£¼0£¬b£¼0D£®a£¾0£¬b£¼0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖª±äÁ¿x£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x-y¡Ý2\\ x+y¡Ü4\\ y¡Ý-1\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=x-2yµÄ×îСֵΪ£¨¡¡¡¡£©
A£®-1B£®1C£®3D£®7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Ä³µØÕþ¸®ÄâÔڸõØÒ»Ë®¿âÉϽ¨ÔìÒ»×ùË®µçÕ¾£¬ÓÃйÁ÷Ë®Á¿·¢µç£®Í¼ÊǸù¾Ý¸ÃË®¿âÀúÄêµÄÈÕйÁ÷Á¿µÄË®ÎÄ×ÊÁÏ»­³ÉµÄÈÕйÁ÷Á¿X£¨µ¥Î»£ºÍòÁ¢·½Ã×£©µÄƵÂÊ·Ö²¼Ö±·½Í¼£¨²»ÍêÕû£©£¬ÒÑÖªX¡Ê[0£¬120£©£¬ÀúÄêÖÐÈÕйÁ÷Á¿ÔÚÇø¼ä[30£¬60£©µÄÄêÆ½¾ùÌìÊýΪ156£¬Ò»Äê°´364Ìì¼Æ£®
£¨¢ñ£©Çë°ÑƵÂÊ·Ö²¼Ö±·½Í¼²¹³äÍêÕû£»
£¨¢ò£©ÒÑ֪һ̨СÐÍ·¢µç»ú£¬Ðè30ÍòÁ¢·½Ã×ÒÔÉϵÄÈÕйÁ÷Á¿²ÅÄÜÔËÐУ¬ÔËÐÐÒ»Ìì¿É»ñÀûÈóΪ4000Ôª£¬Èô²»ÔËÐУ¬ÔòÿÌì¿÷Ëð500Ôª£»Ò»Ì¨ÖÐÐÍ·¢µç»ú£¬Ðè60ÍòÁ¢·½Ã×ÒÔÉϵÄÈÕйÁ÷Á¿²ÅÄÜÔËÐУ¬ÔËÐÐÒ»Ìì¿É»ñÀû10000Ôª£¬Èô²»ÔËÐУ¬ÔòÿÌì¿÷Ëð800Ôª£»¸ù¾ÝÀúÄêÈÕйÁ÷Á¿µÄË®ÎÄ×ÊÁÏ£¬Ë®µçÕ¾¾ö¶¨°²×°Ò»Ì¨·¢µç»ú£¬ÎªÊ¹Ò»ÄêµÄÈÕ¾ùÀûÈóÖµ×î´ó£¬Ó¦°²×°ÄÄÖÖ·¢µç»ú£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¹ýµãM£¨0£¬1£©µÄÍÖÔ² ¦££º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$
£¨1£©ÇóÍÖÔ² ¦£µÄ·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl²»¹ýµãM£¬ÓëÍÖÔ² ¦£ÏཻÓÚP£¬QÁ½µã£¬Èô¡÷MPQµÄÍâ½ÓÔ²ÊÇÒÔPQΪֱ¾¶£¬ÇóÖ¤£ºÖ±Ïßl¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µãµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªº¯Êý$f£¨x£©=\frac{f'£¨1£©}{e}{e^x}+\frac{f£¨0£©}{2}{x^2}-x$£¬Èô´æÔÚʵÊýmʹµÃ²»µÈʽf£¨m£©¡Ü2n2-n³ÉÁ¢£¬ÇóʵÊýnµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®$£¨{-¡Þ£¬-\frac{1}{2}}]¡È[{1£¬+¡Þ}£©$B£®$£¨{-¡Þ£¬-1}]¡È[{\frac{1}{2}£¬+¡Þ}£©$C£®$£¨{-¡Þ£¬0}]¡È[{\frac{1}{2}£¬+¡Þ}£©$D£®$£¨{-¡Þ£¬-\frac{1}{2}}]¡È[{0£¬+¡Þ}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÔÚÆ½ÐÐËıßÐÎABCDÖУ¬ACÓëBD½»ÓÚµãO£¬EÊÇÏß¶ÎODµÄÖе㣬AEµÄÑÓ³¤ÏßÓëCDÏཻÓÚµãF£®ÈôAB=2£¬$AD=\sqrt{2}$£¬¡ÏBAD=45¡ã£¬Ôò$\overrightarrow{AF}•\overrightarrow{BE}$=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®1C£®-$\frac{1}{2}$D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªÊýÁÐ{an}Êǵ¥µ÷µÝ¼õµÄµÈ²îÊýÁУ¬S6=S11£¬ÓÐÒÔÏÂËĸö½áÂÛ£º
£¨1£©a9=0
£¨2£©µ±n=8»òn=9ʱ£¬SnÈ¡×î´óÖµ
£¨3£©´æÔÚÕýÕûÊýkʹµÃSk=0
£¨4£©´æÔÚÕýÕûÊýmʹµÃSm=S2m
ÆäÖÐÕýÈ·µÄÊÇ£¨1£©£¬£¨2£©£¬£¨3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬ÇÒÔÚÇø¼ä[0£¬+¡Þ£©µ¥µ÷µÝ¼õ£¬ÈôʵÊýaÂú×ãf£¨log3a£©+f£¨${log}_{\frac{1}{3}}$a£©¡Ü2f£¨2£©£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{1}{9}$£¬9]B£®£¨-¡Þ£¬$\frac{1}{9}$]C£®[$\frac{1}{2}$£¬2]D£®£¨0£¬$\frac{1}{9}$]¡È[9£¬+¡Þ]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸