| A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $-\frac{π}{4}$ | D. | $\frac{π}{4}或-\frac{π}{4}$ |
分析 利用同角三角函数的基本关系求得 sinα和cosβ的值,再利用两角差的正弦公式求得sin(α-β)的值,结合α-β∈(-$\frac{π}{2}$,$\frac{π}{2}$),可得α-β的值.
解答 解:∵角α,β均为锐角,且cosα=$\frac{{2\sqrt{5}}}{5}$,sinβ=$\frac{{3\sqrt{10}}}{10}$,
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{\sqrt{5}}{5}$,cosβ=$\sqrt{{1-sin}^{2}β}$=$\frac{\sqrt{10}}{10}$,
则sin(α-β)=sinαcosβ-cosαsinβ=$\frac{\sqrt{5}}{5}$•$\frac{\sqrt{10}}{10}$-$\frac{2\sqrt{5}}{5}$•$\frac{3\sqrt{10}}{10}$=-$\frac{\sqrt{2}}{2}$,
再根据α-β∈(-$\frac{π}{2}$,$\frac{π}{2}$),可得α-β=-$\frac{π}{4}$,
故选:C.
点评 本题主要考查同角三角函数的基本关系、两角差的正弦公式的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 对服务好评 | 对服务不满意 | 合计 | |
| 对商品好评 | |||
| 对商品不满意 | |||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 长度相等的向量叫做相等向量 | |
| B. | 共线向量是在同一条直线上的向量 | |
| C. | 零向量的长度等于0 | |
| D. | $\overrightarrow{AB}$∥$\overrightarrow{CD}$就是$\overrightarrow{AB}$所在的直线平行于$\overrightarrow{CD}$所在的直线 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p,q,r都不大于2 | B. | p,q,r都不小于2 | ||
| C. | p,q,r至少有一个不小于2 | D. | p,q,r至少有一个不大于2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com