精英家教网 > 高中数学 > 题目详情
如图所示,F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该椭圆的交点分别为A、B、C、D,若三角形F2AB为等边三角形,则椭圆的离心率为(  )
A、
3
-1
B、
2
+1
C、
2
+1
2
D、
3
-1
2
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:连结AF1,根据圆的直径的性质和等边三角形的性质,证出△F1AF2是含有30°角的直角三角形,由此得到|F1A|=c且|F2A|=
3
c.再利用椭圆的定义,得到2a=|F1A|+|F2A|=(1+
3
)c,即可算出该椭圆的离心率.
解答: 解:连结AF1
∵F1F2是圆O的直径,∴∠F1AF2=90°,即F1A⊥AF2
又∵△F2AB是等边三角形,F1F2⊥AB,
∴∠AF1F2=
1
2
∠AF2B=30°,
因此,Rt△F1AF2中,|F1F2|=2c,|F1A|=
1
2
|F1F2|=c,|F2A|=
3
2
|F1F2|=
3
c.
根据椭圆的定义,得2a=|F1A|+|F2A|=(1+
3
)c,解得a=
1+
3
2
c,
∴椭圆的离心率为e=
c
a
=
3
-1.
故选:A.
点评:本题给出以椭圆焦距F1F2为直径的圆交椭圆于A、B两点,在△F2AB是等边三角形的情况下求椭圆的离心率.着重考查了椭圆的定义、标准方程与简单几何性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下五个命题:
①若直线l∥直线a,a?β,则l∥β;
②如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,则l⊥平面γ;
③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;
④命题p:“?x0∈R,使得x02+x0+1<0”,则?p:“?x∈R,均有x2+x+1≥0”;
⑤设函数f(x)=ex,g(x)=lnx+m,对于?x1∈[1,2],?x2∈[1,2],使不等式f(x1)>g(x2)成立,则m<e-ln2.
其中正确的命题序号为
 
.(将你认为正确的命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意非零实数a、b、c、d,下列判断:
①若a>b,则ac>bc;
②若a>b,则ac2>bc2
③若ac2>bc2,则a>b;
④若a>b,则
1
a
1
b

⑤若a>b>0,c>d,则ac>bd.
其中正确的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

称d(
a
b
)=|
a
-
b
|为两个向量
a
b
间距离,若
a
b
满足①|
b
|=1②
a
b
  ③对任意实数t,恒有d(
a
,t
b
)≥d(
a
b
),则(  )
A、(
a
+
b
)⊥(
a
-
b
B、
b
⊥(
a
-
b
C、
a
b
D、
a
⊥(
a
-
b

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题,其中正确的命题是(  )
A、有两个面互相平行,其余各面都是平行四边形的多面体是棱柱
B、棱台的侧面是等腰梯形
C、经过圆柱任意两条母线的截面是一个矩形
D、一条直线在平面上的平行投影仍是直线

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
满足:|
a
|=3,|
b
|=4,|
a
+
b
|=6,则|
a
-
b
|=(  )
A、
13
B、
14
C、4
D、
15

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)的定义域分别为DJ,DE且DJ?DK,若对于任意x∈DJ,都有g(x)=f(x),则称函数g(x)为f(x)在DE上的一个延拓函数.设f(x)=e-x(x-1)(x>0),g(x)为f(x)在R上的一个延拓函数,且g(x)是奇函数.给出以下命题:
①当x<0时,g(x)=e-x(1-x)
②函数g(x)有3个零点
③g(x)>0解集为(-1,0)∪(1,+∞)
④?x1,x2∈R都有|g(x1)-g(x2)|≤2
其中正确的命题个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班级爱好体育有爱好音乐的人数(  )
A、26B、27C、28D、29

查看答案和解析>>

科目:高中数学 来源: 题型:

对于各项均为正数的无穷数列{an},记bn=
an+1
an
(n∈N*),给出下列定义:
①若存在实数M,使an≤M成立,则称数列{an}为“有上界数列”;
②若数列{an}为有上界数列,且存在n0(n0∈N*),使a n0=M成立,则称数列{an}为“有最大值数列”;
③若bn+1-bn<0,则称数列{an}为“比减小数列”.
(Ⅰ)根据上述定义,判断数列{
1
n
}是何种数列?
(Ⅱ)若数列{an}中,a1=
2
,an+1=
2+an
,求证:数列{an}既是有上界数列又是比减小数列;
(Ⅲ)若数列{an}是单调递增数列,且是有上界数列,但不是有最大值数列,求证:?n∈N*,bn+1-bn≤0.

查看答案和解析>>

同步练习册答案