精英家教网 > 高中数学 > 题目详情
18.如果函数f(x)对任意a,b满足f(a+b)=f(a)•f(b),且f(1)=2,则$\frac{f(2)}{f(1)}+\frac{f(4)}{f(3)}+\frac{f(6)}{f(5)}+…+\frac{f(2016)}{f(2015)}$=(  )
A.1006B.2010C.2016D.4032

分析 令b=1,得f(a+1)=f(a)•f(1)=2f(a),得$\frac{f(a+1)}{f(a)}$=2,由此能求出结果.

解答 解:∵函数f(x)满足:对任意实数a,b都有f(a+b)=f(a)f(b),且f(1)=2,
∴$\frac{f(2)}{f(1)}+\frac{f(4)}{f(3)}+\frac{f(6)}{f(5)}+…+\frac{f(2016)}{f(2015)}$=2+2+…+2=2
=2×1008=2016.
故选:C.

点评 本题主要考查函数值的计算,根据条件寻找规律是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设f(x)=ex-e-x,g(x)=ex+e-x
(1)分别判断f(x),g(x)的奇偶性,并说明理由;
(2)求[f(x)]2-[g(x)]2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.平面几何中,若△ABC的内切圆半径为r,其三边长分别为a,b,c,则△ABC的面积$S=\frac{1}{2}(a+b+c)•r$.类比上述命题,若三棱锥的内切球半径为R,其四个面的面积分别为S1,S2,S3,S4,猜想三棱锥体积V的一个公式.若三棱锥P-ABC的体积V=$\frac{{2\sqrt{2}}}{3}$,其四个面的面积均为$\sqrt{3}$,根据所猜想的公式计算该三棱锥P-ABC的内切球半径R为(  )
A.$\frac{{\sqrt{6}}}{6}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{6}}}{12}$D.$\frac{{\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x3+ax.
(Ⅰ)若f(x)在x=1处的切线平行于x轴,求a的值和f(x)的极值;
(Ⅱ)若过点A(1,0)可作曲线y=f(x)的三条切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列命题:
①存在实数x,使得sinx+cosx=$\frac{3}{2}$;
②函数y=2sin(2x+$\frac{π}{3}$)的图象关于点($\frac{π}{12}$,0)对称;
③若函数f(x)=ksinx+cosx的图象关于点($\frac{π}{4}$,0)对称,则k=-1;
④在平行四边形ABCD中,若|$\overrightarrow{BC}$+$\overrightarrow{BA}$|=|$\overrightarrow{BC}$+$\overrightarrow{AB}$|,则四边形ABCD的形状一定是矩形.
则其中正确的序号是③④(将正确的判断的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.幂函数的图象过点$(2,\sqrt{2})$,则该幂函数的解析式为(  )
A.y=x-1B.$y={x^{\frac{1}{2}}}$C.y=x2D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若$\overrightarrow{PF}$=3$\overrightarrow{QF}$,则|QF|=$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设区域Ω={(x,y)|0≤x≤2,0≤y≤2},区域A={(x,y)|xy≤1,(x,y)∈Ω},在区域Ω中随机取一个点,则该点在A中的概率(  )
A.$\frac{1+2ln2}{4}$B.$\frac{1+2ln2}{8}$C.$\frac{2ln2}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在正方体中,E,F是棱A′B′与D′C′的中点,求面EBCF与面ABCD所成二面角的正切值.(取锐角)

查看答案和解析>>

同步练习册答案