精英家教网 > 高中数学 > 题目详情
8.如图,在正方体中,E,F是棱A′B′与D′C′的中点,求面EBCF与面ABCD所成二面角的正切值.(取锐角)

分析 根据二面角的定义找出二面角的平面角,进行求解即可.

解答 解:∵在正方体ABCD-A′B′C′D′中,
∴BC⊥平面ABB′A′,
则BC⊥AB,BC⊥EB,
则∠EBA为面EBCF与面ABCD所成二面角的平面角,
取AB的中点G,则直角三角形EBG中,
tan∠EBA=$\frac{EG}{BG}$=2,
即面EBCF与面ABCD所成二面角的正切值为2.

点评 本题主要考查二面角的求解,根据二面角的定义找出二面角的平面角是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.如果函数f(x)对任意a,b满足f(a+b)=f(a)•f(b),且f(1)=2,则$\frac{f(2)}{f(1)}+\frac{f(4)}{f(3)}+\frac{f(6)}{f(5)}+…+\frac{f(2016)}{f(2015)}$=(  )
A.1006B.2010C.2016D.4032

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.向量$\overrightarrow{a}$=(1,2,-2),$\overrightarrow{b}$=(-3,x,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x-y=-12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函改数y=x3-ax2-x+6在区间(0,1)内单调递减.则实数a的取值范围为(  )
A.a≥1B.-1<a<0C.a<0D.0<a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)+cosωxcosφ-sinωxsinφ(ω>0,0<φ<$\frac{π}{2}$)是偶函数,相邻两个零点间距离为1.(1)求f(x)的单调递增区间;
(2)已知△ABC为锐角三角形,角A、B、C对边分别为a、b、c,若f($\frac{A}{π}$)=1,a=7,b=8,求c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出如下四个命题:
①命题p:?x0∈R,x${\;}_{0}^{2}$+x0-1<0,则非p:?x∉R,x2+x-1≥0;
②命题“若x≥2且y≥3,则x+y≥5”的否命题为“若x<2且y<3,则x+y<5”;
③四个实数a,b,c,d依次成等比数列的必要而不充分条件是ad=bc;
④在△ABC中,“A>45°”是“sinA>$\frac{\sqrt{2}}{2}$”的充分不必要条件
其中正确的命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知一个四棱锥的三视图如图所示,则此四棱锥的体积为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设某银行的总存款与银行付给存户的利率的平方成正比,若银行以10%的年利率把总存款的90%贷出,同时能获得最大利润,需要支付给存户的年利率应为6%.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:$\frac{sin(3π-α)tan(α+π)cot(-α-π)}{cos(π-α)tan(3π-α)}$.

查看答案和解析>>

同步练习册答案