精英家教网 > 高中数学 > 题目详情
16.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(0,0,0),(1,0,1),(0,1,1),($\frac{1}{2}$,1,0),绘制该四面体三视图时,按照如图所示的方向画正视图,则得到左视图可以为(  )
A.B.C.D.

分析 利用已知条件,画出几何体的图形,然后画出左视图,判断选项即可.

解答 解:满足条件的四面体如右图,

依题意投影到yOz平面为正投影,所以左(侧)视方向如图所示,所以得到左视图效果如右图,
故选:B.

点评 本题考查简单几何体的三视图的画法,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{lnx}{x}$,g(x)=-x2+ax+1.
(1)求函数y=f(x)在[t,t+2](t>0)上的最大值;
(2)若函数y=x2f(x)+g(x)有两个不同的极值点x1,x2(x1<x2),且x2-x1>$\frac{1}{2}$ln2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-2ax(其中a∈R).
(1)当a=2时,求函数f(x)的图象在x=1处的切线方程;
(2)若f(x)≤2恒成立,求a的取值范围;
(3)设g(x)=f(x)+$\frac{1}{2}$x2,且函数g(x)有极大值点x0.求证:x0f(x0)+1+ax${\;}_{0}^{2}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(mx2-x+m)e-x(m∈R).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)当m>0时,证明:不等式f(x)≤$\frac{m}{x}$在(0,1+$\frac{1}{m}$]上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某商城举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖规则如下:
1.抽奖方案有以下两种,方案a:从装有1个红球、2个白球(仅颜色不同)的甲袋中随机摸出1个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将抽出的球放回甲袋中,方案b:从装有2个红球、1个白球(仅颜色相同)的乙袋中随机摸出1个球,若是红球,则获得奖金10元;否则,没有奖金,兑奖后将抽出的球放回乙袋中.
2.抽奖条件是,顾客购买商品的金额满100元,可根据方案a抽奖一次:满150元,可根据方案b抽奖一次(例如某顾客购买商品的金额为310元,则该顾客采用的抽奖方式可以有以下三种,根据方案a抽奖三次或方案b抽奖两次或方案a、b各抽奖一次).已知顾客A在该商场购买商品的金额为250元.
(1)若顾客A只选择方案a进行抽奖,求其所获奖金为15元的概率;
(2)若顾客A采用每种抽奖方式的可能性都相等,求其最有可能获得的奖金数(除0元外).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右顶点为A(2,0),左、右焦点分别为F1、F2,过点A且斜率为$\frac{1}{2}$的直线与y轴交于点P,与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P的直线与椭圆交于M,N两点(M,N不与A,B重合),若S△PAM=6S△PBN,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2lnx+$\frac{a}{x}$-2lna-k$\frac{x}{a}$
(1)若k=0,证明f(x)>0
(2)若f(x)≥0,求k的取值范围;并证明此时f(x)的极值存在且与a无关.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx-x2+x
(1)求函数f(x)在点x=2处的切线的斜率;
(2)求函数f(x)的极值;
(3)证明:当a≥2时,关于x的不等式f(x)<($\frac{a}{2}$-1)x2+ax-1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在锐角△ABC中,D为AC边的中点,且BC=$\sqrt{2}BD=2\sqrt{2}$,O为△ABC外接圆的圆心,且cos∠AOC=-$\frac{3}{4}$.
(1)求∠ABC的余弦值,
(2)求△ABC的面积.

查看答案和解析>>

同步练习册答案