精英家教网 > 高中数学 > 题目详情
1.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右顶点为A(2,0),左、右焦点分别为F1、F2,过点A且斜率为$\frac{1}{2}$的直线与y轴交于点P,与椭圆交于另一个点B,且点B在x轴上的射影恰好为点F1
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点P的直线与椭圆交于M,N两点(M,N不与A,B重合),若S△PAM=6S△PBN,求直线MN的方程.

分析 (Ⅰ)当$k=\frac{1}{2}$时,BF1⊥x轴,求出$B(-c,-\frac{b^2}{a})$,列出方程组,求出a,b即可得到椭圆的标准方程.
(Ⅱ)通过民间的比推出$\overrightarrow{PM}=-3\overrightarrow{PN}$.设M(x1,y1),N(x2,y2),设MN方程为y=kx-1,联立直线与椭圆方程,利用韦达定理转化情况直线的斜率,求出直线方程.

解答 解:(Ⅰ)当$k=\frac{1}{2}$时,BF1⊥x轴,得到点$B(-c,-\frac{b^2}{a})$,
所以$\left\{\begin{array}{l}a=2\\ \frac{b^2}{a(a+c)}=\frac{1}{2}\\{a^2}={b^2}+{c^2}\end{array}\right.⇒\left\{\begin{array}{l}a=2\\ b=\sqrt{3}\\ c=1\end{array}\right.$,所以椭圆C的方程是$\frac{x^2}{4}+\frac{y^2}{3}=1$.
(Ⅱ)因为$\frac{{{S_{△PAM}}}}{{{S_{△PBN}}}}=\frac{{\frac{1}{2}PA•PM•sin∠APM}}{{\frac{1}{2}PB•PN•sin∠BPN}}=\frac{2•PM}{1•PN}=\frac{6}{1}⇒\frac{PM}{PN}=3$,所以$\overrightarrow{PM}=-3\overrightarrow{PN}$.
设M(x1,y1),N(x2,y2),则$\overrightarrow{PM}=({x_1},{y_1}+1),\overrightarrow{PN}=({x_2},{y_2}+1)$,有$\left\{\begin{array}{l}{x_1}=-3{x_2}\\{y_1}+1=-3({y_2}+1)\end{array}\right.$.
由(Ⅰ)可知P(0,-1),设MN方程为y=kx-1,
联解方程$\left\{\begin{array}{l}y=kx-1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$得:(4k2+3)x2-8kx-8=0.
由韦达定理可得$\left\{\begin{array}{l}{x_1}+{x_2}=\frac{8k}{{4{k^2}+3}}\\{x_1}•{x_2}=\frac{-8}{{4{k^2}+3}}\end{array}\right.$,将x1=-3x2代入可得$\left\{\begin{array}{l}-2{x_2}=\frac{8k}{{4{k^2}+3}}\\ 3x_2^2=\frac{8}{{4{k^2}+3}}\end{array}\right.$,
即$3{(\frac{-4k}{{4{k^2}+3}})^2}=\frac{8}{{4{k^2}+3}}$.
所以${k^2}=\frac{3}{2}⇒k=±\frac{{\sqrt{6}}}{2}$,即直线l2的方程为$y=±\frac{{\sqrt{6}}}{2}x-1$.

点评 本题考查直线与椭圆的位置关系的应用,椭圆方程的求法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.对于数列{an},定义Tn=a1a2+a2a3+…+anan+1,n∈N*
(1)若an=n,是否存在k∈N*,使得Tk=2017?请说明理由;
(2)若a1=3,${T_n}={6^n}-1$,求数列{an}的通项公式;
(3)令${b_n}=\left\{\begin{array}{l}{T_2}-2{T_1},\begin{array}{l}{\;}{\;}{n=1}\end{array}\\{T_{n+1}}+{T_{n-1}}-2{T_n}\begin{array}{l}{\;},{n≥2,n∈{N^*}}\end{array}\end{array}\right.$,求证:“{an}为等差数列”的充要条件是“{an}的前4项为等差数列,且{bn}为等差数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点分别为F1,F2,O为坐标原点,A为右顶点,P为双曲线左支上一点,若$\frac{{{{|{P{F_2}}|}^2}}}{{|{P{F_1}}|-|{OA}|}}$存在最小值为12a,则双曲线一三象限的渐近线倾斜角的余弦值的最小值是(  )
A.$\frac{1}{5}$B.$\frac{1}{2}$C.$\frac{{2\sqrt{6}}}{5}$D.$\frac{{\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知点O是△ABC的内心,∠BAC=60°,BC=1,则△BOC面积的最大值为$\frac{\sqrt{3}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(0,0,0),(1,0,1),(0,1,1),($\frac{1}{2}$,1,0),绘制该四面体三视图时,按照如图所示的方向画正视图,则得到左视图可以为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直线l与函数y=cosx(x∈[-$\frac{π}{2}$,$\frac{π}{2}$])图象相切于点A,且l∥CP,C(-$\frac{π}{2}$,0),P为图象的极值点,l与x轴交点为B,过切点A作AD⊥x轴,垂足为D,则$\overrightarrow{BA}•\overrightarrow{BD}$=$\frac{{π}^{2}-4}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球的表面积为(  )
A.$4\sqrt{3}π$B.12πC.48πD.$32\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和Sn=$\frac{{{n^2}+3n}}{2}$,正项等比数列{bn}中,b1+b3=$\frac{20}{3}$,b2+b4=$\frac{20}{9}$.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若cn是an与bn+1的等比中项,求数列{cn2}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点N(-1,0),F(1,0)为平面直角坐标系内两定点,点M是以N为圆心,4为半径的圆上任意一点,线段MF的垂直平分线交于MN于点R.
(1)点R的轨迹为曲线E,求曲线E的方程;
(2)抛物线C的顶点在坐标原点,F为其焦点,过点F的直线l与抛物线C交于A、B两点,与曲线E交于P、Q两点,请问:是否存在直线l使A,F,Q是线段PB的四等分点?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案