精英家教网 > 高中数学 > 题目详情
已知直角坐标平面内点A(x,y)到点F1(-1,0)与点F2(1,0)的距离之和为4.
(1)试求点A的轨迹M的方程;
(2)若斜率为
1
2
的直线l与轨迹M交于C、D两点,点P(1,  
3
2
)
为轨迹M上一点,记直线PC的斜率为k1,直线PD的斜率为k2,试问:k1+k2是否为定值?请证明你的结论.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(1)由题知|AF1|+|AF2|=4,|F1F2|=2,则|AF1|+|AF2|>|F1F2|,由椭圆的定义知点A轨迹M是椭圆其中a=2,c=1,从而能求出椭圆M的方程.
(2)设直线l的方程为:y=
1
2
x+b
,C(x1,y1),D(x2,y2),联立直线l的方程与椭圆方程,得x2+bx+b2-3=0,当△>0时,即b2-4(b2-3)>0,直线l与椭圆有两交点,由韦达定理,得:
x1+x2=-b
x1x2=b2-3
,由此能够得到k1+k2为定值.
解答: 解:(1)由题知|AF1|+|AF2|=4,|F1F2|=2,则|AF1|+|AF2|>|F1F2|
由椭圆的定义知点A轨迹M是椭圆,其中a=2,c=1.
因为b2=a2-c2=3,
所以,轨迹M的方程为
x2
4
+
y2
3
=1

(2)设直线l的方程为:y=
1
2
x+b
,C(x1,y1),D(x2,y2
联立直线l'的方程与椭圆方程,消去y可得:3x2+4(
1
2
x+b)2=12

化简得:x2+bx+b2-3=0
当△>0时,即,b2-4(b2-3)>0,也即|b|<2时,直线l'与椭圆有两交点,
由韦达定理得:
x1+x2=-b
x1x2=b2-3

所以,k1=
y1-
3
2
x1-1
=
1
2
x1+b-
3
2
x1-1
k2=
y2-
3
2
x2-1
=
1
2
x2+b-
3
2
x2-1

则k1+k2=
1
2
x1+b-
3
2
x1-1
+
1
2
x2+b-
3
2
x2-1
=
x1x2+(b-2)(x1+x2)+3-2b
(x1-1)(x2-1)
=
b2-3+(b-2)(-b)+3-2b
(x1-1)(x2-1)
=0

所以,k1+k2为定值.
点评:本题考查直线与椭圆的位置关系的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a>b>0),双曲线
x2
a2
-
y2
b2
=1的两条渐近线为l1,l2,过椭圆C的右焦点F作直线l,使l⊥l1,又l与l2交于P点,设l与椭圆C的两个交点由上至下依次为A,B.
(1)若l1与l2夹角为60°,双曲线的焦距为4时,求椭圆C的方程及离心率;
(2)求
FA
AP
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P与平面上两定点A(-
3
,0),B(
3
,0)
连线的斜率的积为定值-
1
3

(1)求点P的轨迹方程;
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别为椭圆
x2
a2
+
y2
a2-1
=1(a>1)的左、右两个焦点,一条直线l经过点F1与椭圆交于A、B两点,且△ABF2的周长为8.
(1)求实数a的值;
(2)若l的倾斜角为
π
4
,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,一个焦点为F(0,
2
)
,且长轴长与短轴长的比为
2
:1

(1)求椭圆C的方程;
(2)若椭圆C上在第一象限内的一点P的横坐标为1,过点P作倾斜角互补的两条不同的直线PA,PB分别交椭圆C于另外两点A,B.求证:直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,抛物线的方程为y2=2px(p>0).
(1)当p=4时,求该抛物线上纵坐标为2的点到其焦点F的距离;
(2)已知该抛物线上一点P的纵坐标为t(t>0),过P作两条直线分别交抛物线与A(x1,y1)、B(x2,y2),当PA与PB的斜率存在且倾斜角互补时,求证:
y1+y2
t
为定值;并用常数p、t表示直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,F是抛物线C:y2=2px(p>0)的焦点,圆Q过O点与F点,且圆心Q到抛物线C的准线的距离为
3
2

(1)求抛物线C的方程;
(2)过F作倾斜角为60°的直线L,交曲线C于A,B两点,求△AOB的面积;
(3)已知抛物线上一点M(4,4),过点M作抛物线的两条弦MD和ME,且MD⊥ME,判断:直线DE是否过定点?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
y≥1
y≤2x-1
x+y≤4
,则z=
y
x
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学在研究函数f(x)=
ax
1+|x|
(x∈R,a>0)
时,分别给出下面几个结论:
①等式f(-x)+f(x)=0对x∈R恒成立;
②函数f(x)的值域为[-a,a];
③函数f(x)为R的单调函数;
④若x1≠x2,则一定有f(x1)≠f(x2);
⑤函数g(x)=f(x)-ax在R上有三个零点.
其中正确结论的序号有
 
.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

同步练习册答案