15£®¼ÇµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{$\frac{{S}_{n}}{n}$}ÊǵȲîÊýÁУ»
£¨2£©Èôa1=1£¬¶ÔÈÎÒâµÄn¡ÊN*£¬n¡Ý2£¬¾ùÓÐ$\sqrt{{S}_{n-1}}$£¬$\sqrt{{S}_{n}}$£¬$\sqrt{{S}_{n+1}}$Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬Çóʹ$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$ΪÕûÊýµÄÕýÕûÊýkµÄȡֵ¼¯ºÏ£»
£¨3£©¼Çbn=a${\;}^{{a}_{n}}$£¨a£¾0£©£¬ÇóÖ¤£º$\frac{{b}_{1}+{b}_{2}+¡­+{b}_{n}}{n}$¡Ü$\frac{{b}_{1}+{b}_{n}}{2}$£®

·ÖÎö £¨1£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬Çó³öSn£¬´Ó¶ø$\frac{Sn}{n}$£¬È»ºóÀûÓÃ×÷²î·¨Ö¤Ã÷ÊýÁÐ{$\frac{Sn}{n}$}ÊǵȲîÊýÁУ»
£¨2£©ÓÉÌâÒâ{$\sqrt{{S}_{n}}$}Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬¿ÉµÃ$\sqrt{Sn}$=$\sqrt{{S}_{1}}$+£¨n-1£©¡Á1=n£¬ÔòSn=n2£®´úÈë$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$£¬¿ÉÖªk=1£¬2Âú×ãÌõ¼þ£¬k=3²»Âú×ãÌõ¼þ£»µ±k¡Ý4ʱ£¬ÀûÓÃ×÷²î·¨Ö¤Ã÷1$£¼1+\frac{3k+2}{{k}^{2}}£¼2$£¬µÃ$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$²»ÊÇÕûÊý£¬´Ó¶ø¿ÉµÃÕýÕûÊýkµÄȡֵ¼¯ºÏΪ{1£¬2}£»
£¨3£©ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬Çó³öan£¬¿ÉµÃbn=a${\;}^{{a}_{n}}$=${a}^{{a}_{1}}•{a}^{£¨n-1£©d}$£¬ÀûÓö¨Òå¿ÉµÃÊýÁÐ{bn}Êǹ«±È´óÓÚ0£¬Ê×Ïî´óÓÚ0µÄµÈ±ÈÊýÁУ¬¼Ç¹«±ÈΪq£¨q£¾0£©£®ÔÙÖ¤Ã÷b1+bn¡Ýbp+bk£¬ÆäÖÐp£¬kΪÕýÕûÊý£¬ÇÒp+k=1+n£®¼´¿ÉÖ¤µÃ$\frac{{b}_{1}+{b}_{2}+¡­+{b}_{n}}{n}$¡Ü$\frac{{b}_{1}+{b}_{n}}{2}$£®

½â´ð £¨1£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬ÔòSn=na1+$\frac{n£¨n-1£©}{2}$d£¬´Ó¶ø$\frac{Sn}{n}$=a1+$\frac{n-1}{2}$d£¬
¡àµ±n¡Ý2ʱ£¬$\frac{Sn}{n}$-$\frac{{S}_{n-1}}{n-1}$=£¨a1+$\frac{n-1}{2}$d£©-£¨a1+$\frac{n-2}{2}$d£©=$\frac{d}{2}$£®
¼´ÊýÁÐ{$\frac{Sn}{n}$}ÊǵȲîÊýÁУ»
£¨2£©½â£º¡ß¶ÔÈÎÒâµÄn¡ÊN*£¬n¡Ý2£¬$\sqrt{{S}_{n-1}}$£¬$\sqrt{{S}_{n}}$£¬$\sqrt{{S}_{n+1}}$¶¼Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬
¡à{$\sqrt{{S}_{n}}$}Êǹ«²îΪ1µÄµÈ²îÊýÁУ¬
ÓÖa1=1£¬¡à$\sqrt{{S}_{1}}=1$£®
¡à$\sqrt{Sn}$=$\sqrt{{S}_{1}}$+£¨n-1£©¡Á1=n£¬ÔòSn=n2£®
¡à$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$=$[\frac{£¨k+1£©£¨k+2£©}{{k}^{2}}]^{2}=£¨1+\frac{3k+2}{{k}^{2}}£©^{2}$£¬
ÏÔÈ»£¬k=1£¬2Âú×ãÌõ¼þ£¬k=3²»Âú×ãÌõ¼þ£»
µ±k¡Ý4ʱ£¬¡ßk2-3k-2=k£¨k-3£©-2¡Ý4£¨4-3£©-2=2£¾0£¬
¡à0£¼$\frac{3k+2}{{k}^{2}}$£¼1£¬
¡à1$£¼1+\frac{3k+2}{{k}^{2}}£¼2$£¬$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$²»ÊÇÕûÊý£®
×ÛÉÏËùÊö£¬ÕýÕûÊýkµÄȡֵ¼¯ºÏΪ{1£¬2}£»
£¨3£©Ö¤Ã÷£ºÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬Ôòan=a1+£¨n-1£©d£¬bn=a${\;}^{{a}_{n}}$=${a}^{{a}_{1}}•{a}^{£¨n-1£©d}$£¬
¡à$\frac{{b}_{n}}{{b}_{n-1}}$=$\frac{{a}^{{a}_{1}}•{a}^{£¨n-1£©d}}{{a}^{{a}_{1}}•{a}^{£¨n-2£©d}}$=ad£¬
¼´ÊýÁÐ{bn}Êǹ«±È´óÓÚ0£¬Ê×Ïî´óÓÚ0µÄµÈ±ÈÊýÁУ¬¼Ç¹«±ÈΪq£¨q£¾0£©£®
ÒÔÏÂÖ¤Ã÷£ºb1+bn¡Ýbp+bk£¬ÆäÖÐp£¬kΪÕýÕûÊý£¬ÇÒp+k=1+n£®
¡ß£¨b1+bn£©-£¨bp+bk£©=b1+b1qn-1-b1qp-1-b1qk-1=b1£¨qp-1-1£©£¨qk-1-1£©£®
µ±q£¾1ʱ£¬¡ßy=qxΪÔöº¯Êý£¬p-1¡Ý0£¬k-1¡Ý0£¬
¡àqp-1-1¡Ý0£¬qk-1-1¡Ý0£¬Ôòb1+bn¡Ýbp+bk£®
µ±q=1ʱ£¬b1+bn=bp+bk£®
µ±0£¼q£¼1ʱ£¬¡ßy=qxΪ¼õº¯Êý£¬p-1¡Ý0£¬k-1¡Ý0£¬
¡àqp-1-1¡Ü0£¬qk-1-1¡Ü0£¬Ôòb1+bn¡Ýbp+bk£®
×ÛÉÏ£¬b1+bn¡Ýbp+bk£¬ÆäÖÐp£¬kΪÕýÕûÊý£¬ÇÒp+k=1+n£®
¡àn£¨b1+bn£©=£¨b1+bn£©+£¨b1+bn£©+¡­+£¨b1+bn£©
¡Ý£¨b1+bn£©+£¨b2+bn-1£©+£¨b3+bn-2£©+¡­+£¨bn+b1£©
=£¨b1+b2+¡­+bn£©+£¨bn+bn-1+¡­+b1£©£¬
¼´$\frac{{b}_{1}+{b}_{2}+¡­+{b}_{n}}{n}$¡Ü$\frac{{b}_{1}+{b}_{n}}{2}$£®

µãÆÀ ±¾ÌâÊÇÊýÁÐÓë²»µÈʽµÄ×ÛºÏÌ⣬¿¼²éµÈ²îÊýÁеÄͨÏʽÓëÐÔÖÊ£¬¿¼²éÁË×÷²î·¨Ö¤Ã÷ÊýÁв»µÈʽ£¬¿¼²é·ÖÎöÎÊÌâÓë½â¾öÎÊÌâµÃÄÜÁ¦£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÃüÌâ¡°?x£¾0£¬¶¼ÓÐx2-x+3¡Ü0¡±µÄ·ñ¶¨ÊÇ£¨¡¡¡¡£©
A£®?x£¾0£¬Ê¹µÃx2-x+3¡Ü0B£®?x£¾0£¬Ê¹µÃx2-x+3£¾0
C£®?x£¾0£¬¶¼ÓÐx2-x+3£¾0D£®?x¡Ü0£¬¶¼ÓÐx2-x+3£¾0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®2017Äê4ÔÂ1ÈÕ£¬Öй²ÖÐÑë¡¢¹úÎñÔº¾ö¶¨ÉèÁ¢µÄ¹ú¼Ò¼¶ÐÂÇø--ÐÛ°²ÐÂÇø£®ÐÛ°²ÐÂÇø½¨Á¢ºó£¬ÔÚ¸ÃÇøÄ³½ÖµÀÁÙ½üµÄA·¿ÚºÍB·¿ÚµÄ³µÁ÷Á¿±ä»¯Çé¿ö£¬Èç±íËùʾ£º
ÌìÊýt£¨µ¥Î»£ºÌ죩1ÈÕ2ÈÕ3ÈÕ4ÈÕ5ÈÕ
A·¿Ú³µÁ÷Á¿x£¨°ÙÁ¾£©0.20.50.80.91.1
B·¿Ú³µÁ÷Á¿y£¨°ÙÁ¾£©0.230.220.511.5
£¨1£©Çóǰ5Ììͨ¹ýA·¿Ú³µÁ÷Á¿µÄƽ¾ùÖµºÍͨ¹ýB·¿ÚµÄ³µÁ÷Á¿µÄ·½²î£¬
£¨2£©¸ù¾Ý±íÖÐÊý¾ÝÎÒÃÇÈÏΪÕâÁ½¸öÁÙ½ü·¿ÚÓнÏÇ¿µÄÏßÐÔÏà¹Ø¹ØÏµ£¬µÚ10ÈÕÔÚA·¿Ú²âµÃ³µÁ÷Á¿Îª3°ÙÁ¾Ê±£¬ÄãÄܹÀ¼ÆÕâÒ»ÌìB·¿ÚµÄ³µÁ÷Á¿Â𣿴óÔ¼ÊǶàÉÙÄØ£¿£¨×îºó½á¹û±£ÁôÁ½Î»Ð¡Êý£©£¨²Î¿¼¹«Ê½£º$\widehatb=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}}}{{\sum_{i=7}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}$£¬$\widehata=\overline y-\widehatb\overline x$£¬£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{x^2}{5}+\frac{y^2}{4}=1$£¬F1£¬F2ΪÍÖÔ²µÄ×óÓÒ½¹µã£¬OΪԭµã£¬PÊÇÍÖÔ²ÔÚµÚÒ»ÏóÏ޵ĵ㣬Ôò$\frac{{|{P{F_1}}|-|{P{F_2}}|}}{{|{PO}|}}$µÄȡֵ·¶Î§£¨¡¡¡¡£©
A£®$£¨{0£¬\frac{{\sqrt{5}}}{5}}£©$B£®$£¨{0£¬\frac{{2\sqrt{5}}}{5}}£©$C£®$£¨{0£¬\frac{{3\sqrt{5}}}{5}}£©$D£®$£¨{0£¬\frac{{6\sqrt{5}}}{5}}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ëæ»ú³éÈ¡ÄêÁäÔÚ[10£¬20£©£¬[20£¬30£©¡­[50£¬60]ÄêÁä¶ÎµÄÊÐÃñ½øÐÐÎʾíµ÷²é£¬Óɴ˵õ½ µÄÑù±¾µÄîlÊý·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬²ÉÓ÷ֲã³éÑùµÄ·½·¨´Ó²»Ð¡ÓÚ40ËêµÄÈËÖа´ÄêÁä½×¶ÎËæ»ú³éÈ¡8ÈË£¬Ôò[50£¬60]ÄêÁä¶ÎÓ¦³éÈ¡ÈËÊýΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÈçͼËùʾ£¬ÔÚÄϺ£ÉÏÓÐÁ½×ùµÆËþA¡¢B£¬ÕâÁ½×ùµÆËþÖ®¼äµÄ¾àÀëΪ60ǧÃ×£¬Óиö»õ´¬´ÓµºP´¦³ö·¢Ç°Íù¾àÀë120ǧÃ×µºQ´¦£¬ÐÐÊ»ÖÂÒ»°ë·³Ìʱ¸ÕºÃµ½´ïM´¦£¬Ç¡ÇÉM´¦ÔÚµÆËþAµÄÕýÄÏ·½£¬Ò²ÕýºÃÔÚµÆËþBµÄÕýÎ÷·½£¬ÏòÁ¿$\overrightarrow{PQ}$¡Í$\overrightarrow{BA}$£¬Ôò$\overrightarrow{AQ}•\overrightarrow{BP}$=-3600£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÉèÍÖÔ²·½³Ì$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©£¬ÍÖÔ²ÉÏÒ»µãµ½Á½½¹µãµÄ¾àÀëºÍΪ4£¬¹ý½¹µãÇÒ´¹Ö±ÓÚxÖáµÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬AB=2£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©ÈôM£¬NÊÇÍÖÔ²CÉϵĵ㣬ÇÒÖ±ÏßOMÓëONµÄбÂÊÖ®»ýΪ$-\frac{1}{2}$£¬ÊÇ·ñ´æÔÚ¶¯µãP£¨x0£¬y0£©£¬Èô$\overrightarrow{OP}=\overrightarrow{OM}+2\overrightarrow{ON}$£¬ÓÐ$x_0^2+2y_0^2$Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®È«¼¯U={0£¬1£¬3£¬5£¬6£¬8}£¬¼¯ºÏA={ 1£¬5£¬8 }£¬B={2}£¬Ôò¼¯ºÏ£¨∁UA£©¡ÈB=£¨¡¡¡¡£©
A£®{0£¬2£¬3£¬6}B£®{ 0£¬3£¬6}C£®{2£¬1£¬5£¬8}D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÏÂÁÐËĸö½áÂÛ£º¢ÙÈôx£¾0£¬Ôòx£¾sinxºã³ÉÁ¢£»
¢ÚÃüÌâ¡°Èôx-sinx=0Ôòx=0¡±µÄÄæÃüÌâΪ¡°Èôx¡Ù0£¬Ôòx-sinx¡Ù0¡±
¢Û¡°ÃüÌâp¡ÅqÎªÕæ¡±ÊÇ¡°ÃüÌâp¡ÄqÎªÕæ¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£»
¢ÜÃüÌâ¡°?x¡ÊR+£¬x-lnx£¾0¡±µÄ·ñ¶¨ÊÇ¡°$?{x_0}¡Ê{R^+}£¬{x_0}-ln{x_0}¡Ü0$¡±£®
ÆäÖÐÕýÈ·½áÂ۵ĸöÊýÊÇ£¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸