精英家教网 > 高中数学 > 题目详情
6.2017年4月1日,中共中央、国务院决定设立的国家级新区--雄安新区.雄安新区建立后,在该区某街道临近的A路口和B路口的车流量变化情况,如表所示:
天数t(单位:天)1日2日3日4日5日
A路口车流量x(百辆)0.20.50.80.91.1
B路口车流量y(百辆)0.230.220.511.5
(1)求前5天通过A路口车流量的平均值和通过B路口的车流量的方差,
(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A路口测得车流量为3百辆时,你能估计这一天B路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,)

分析 (1)首先求解A,B路口的平均值,然后结合平均值求解方差即可;
(2)结合题意求得回归方程,然后利用回归方程预测这一天B路口的车流量即可.

解答 解:(1)由题意可知,$\overline x=\frac{0.2+0.5+0.8+0.9+1.1}{5}=0.70$(百辆),
$\overline y=\frac{0.23+0.22+0.5+1+1.5}{5}=0.69$(百辆),
所以通过B路口的车流量的方差为$s_y^2=\frac{1}{5}[{{{({0.23-0.69})}^2}+{{({0.22-0.69})}^2}+{{({0.5-0.69})}^2}+{{({1-0.69})}^2}+{{({1.5-0.69})}^2}}]≈0.24$(百辆2).
故前5天通过A路口车流量的平均值为0.70百辆和通过B路口的车流量的方差为0.24(百辆2);
(2)根据题意可得,$\widehatb=\frac{{\sum_{i=1}^5{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^5{{{({x_i}-\overline x)}^2}}}}≈1.38$,
所以$\widehata=0.69-1.38×0.7=-0.28$,
所以A路口车流量和B路口的车流量的线性回归方程为y=1.38x-0.28,
当x=3时,y=1.38×3-0.28=3.86(百辆).
故这一天B路口的车流量大约是3.86百辆.

点评 本题考查回归方程的应用,平均值、方差的计算等,重点考查学生对基础概念的理解和计算能力,属于中等题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知复数z满足$\frac{\overline{z}-1}{z+1}$=$\frac{1}{2}$i,则复数z在复平面内对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,$∠A=\frac{π}{3}$,O为平面内一点,且$|{\overrightarrow{OA}}|=|{\overrightarrow{OB}}|=|{\overrightarrow{OC}}|$,M为劣弧$\widehat{BC}$上一动点,且$\overrightarrow{OM}=p\overrightarrow{OB}+q\overrightarrow{OC}$,
则p+q的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\frac{{1-\sqrt{2}sin(2x-\frac{π}{4})}}{cosx}$.
(Ⅰ)求f(x)的定义域;
(Ⅱ)设α是第四象限的角,且$sinα=-\frac{12}{13}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l:y=2x+1与圆C:x2+y2=1交于两点A,B,不在圆上的一点M(-1,m),若$\overrightarrow{MA}$$•\overrightarrow{MB}=1$,则m的值为(  )
A.-1,$\frac{7}{5}$B.1,$\frac{7}{5}$C.1,-$\frac{7}{5}$D.-1,$-\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.射击运动员打靶,射5发,环数分别为9,10,8,10,8,则该数据的方差为$\frac{4}{5}$..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}满足${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d,\frac{n}{k}∉{N^*}\\ q{a_n},\frac{n}{k}∈{N^*}\end{array}\right.$(k∈N*,k≥2,且q、d为常数),若{an}为等比数列,且首项为a(a≠0),则{an}的通项公式为an=a或${a_n}={({-1})^{n-1}}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.记等差数列{an}的前n项和为Sn
(1)求证:数列{$\frac{{S}_{n}}{n}$}是等差数列;
(2)若a1=1,对任意的n∈N*,n≥2,均有$\sqrt{{S}_{n-1}}$,$\sqrt{{S}_{n}}$,$\sqrt{{S}_{n+1}}$是公差为1的等差数列,求使$\frac{{S}_{k+1}{S}_{k+2}}{{S}_{k}^{2}}$为整数的正整数k的取值集合;
(3)记bn=a${\;}^{{a}_{n}}$(a>0),求证:$\frac{{b}_{1}+{b}_{2}+…+{b}_{n}}{n}$≤$\frac{{b}_{1}+{b}_{n}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.完成一项装修工程,请木工共需付工资每人500元,请瓦工共需付工资每人400元,现有工人工资预算20000元,设木工x人,瓦工y人,则工人满足的关系式是(  )
A.5x+4y<200B.5x+4y≥200C.5x+4y=200D.5x+4y≤200

查看答案和解析>>

同步练习册答案