精英家教网 > 高中数学 > 题目详情
16.完成一项装修工程,请木工共需付工资每人500元,请瓦工共需付工资每人400元,现有工人工资预算20000元,设木工x人,瓦工y人,则工人满足的关系式是(  )
A.5x+4y<200B.5x+4y≥200C.5x+4y=200D.5x+4y≤200

分析 由题意可得总的工资50x+40y≤2000,化简即可.

解答 解:由题意可得:请木工需付工资每人500元,请瓦工需付工资每人400元,
设木工x人,瓦工y人,可得总的工资为500x+400y,
又因为现有工人工资预算20000元,故500x+400y≤20000,
化简可得5x+4y≤200,
故选:D.

点评 本题考查简单线性规划的应用,如何建模是解决这类问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.2017年4月1日,中共中央、国务院决定设立的国家级新区--雄安新区.雄安新区建立后,在该区某街道临近的A路口和B路口的车流量变化情况,如表所示:
天数t(单位:天)1日2日3日4日5日
A路口车流量x(百辆)0.20.50.80.91.1
B路口车流量y(百辆)0.230.220.511.5
(1)求前5天通过A路口车流量的平均值和通过B路口的车流量的方差,
(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A路口测得车流量为3百辆时,你能估计这一天B路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0),椭圆上一点到两焦点的距离和为4,过焦点且垂直于x轴的直线交椭圆于A,B两点,AB=2.
(1)求椭圆方程;
(2)若M,N是椭圆C上的点,且直线OM与ON的斜率之积为$-\frac{1}{2}$,是否存在动点P(x0,y0),若$\overrightarrow{OP}=\overrightarrow{OM}+2\overrightarrow{ON}$,有$x_0^2+2y_0^2$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.全集U={0,1,3,5,6,8},集合A={ 1,5,8 },B={2},则集合(∁UA)∪B=(  )
A.{0,2,3,6}B.{ 0,3,6}C.{2,1,5,8}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}中,a1=2,a n+1=3an+2n,求通项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中正确的是(  )
A.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$B.若|$\overrightarrow{a}$|=1,则$\overrightarrow{a}$=1C.若|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$D.若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{a}$∥$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a>b>0,则下列不等式一定不成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.log2a>log2bC.a2+b2≤2a+2b-2D.b<$\sqrt{ab}$<$\frac{a+b}{2}$<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四个结论:①若x>0,则x>sinx恒成立;
②命题“若x-sinx=0则x=0”的逆命题为“若x≠0,则x-sinx≠0”
③“命题p∨q为真”是“命题p∧q为真”的充分不必要条件;
④命题“?x∈R+,x-lnx>0”的否定是“$?{x_0}∈{R^+},{x_0}-ln{x_0}≤0$”.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,∠BAC=90°,BC=5,D,E为边BC上的两点,且满足:$\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BC},\overrightarrow{CE}=\frac{1}{3}\overrightarrow{CB}$,则$\overrightarrow{AD}•\overrightarrow{AE}$的值为$\frac{50}{9}$.

查看答案和解析>>

同步练习册答案