精英家教网 > 高中数学 > 题目详情
对于实数a和b,定义运算a*b,运算原理如图所示,则式子(
1
2
)
-2
*lne2的值为(  )
A、8
B、10
C、12
D、
3
2
考点:程序框图
专题:算法和程序框图
分析:先根据流程图中即要分析出计算的类型,该题是考查了分段函数,再求出函数的解析式,然后根据解析式求解函数值即可.
解答: 解:该算法是一个分段函数y=
a×(b+1),a≥b
b×(a+1),a<b

(
1
2
)
-2
=4>lne2=2,
(
1
2
)
-2
*lne2=4×(2+1)=12.
故选:C
点评:根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图,从流程图中即要分析出计算的类型,又要分析出参与计算的数据建立数学模型,根据第一步分析的结果,选择恰当的数学模型解模.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(n)是定义在N*上的增函数,f(4)=5,且满足:①任意n∈N*,f(n)∈Z;②任意m,n∈N*,有f(m)f(n)=f(mn)+f(m+n-1).
(1)求f(1),f(2),f(3)的值;
(2)求f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinxcosx,x∈R,则函数f(x)的最小值是(  )
A、-
1
4
B、-
1
2
C、-
3
2
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图的程序框图,则输出的S=(  )
A、7B、8C、15D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若AB=2,AC=3,∠A=60°,则BC的长为(  )
A、
19
B、
13
C、3
D、
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面α内有一个以AB为直径的圆,PA⊥α,点C在圆周上(不同于A、B两点),点D、E分别是点A在PC、PB上的射影,则(  )
A、PC⊥面ADE
B、∠ACB是二面角A-PC-B的平面角
C、BC∥面ADE
D、PB⊥面ADE

查看答案和解析>>

科目:高中数学 来源: 题型:

P为圆A:(x+1)2+y2=8上的动点,点B(1,0).线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(I)求曲线Γ的方程;
(Ⅱ)当点P在第一象限,且cos∠BAP=
2
2
3
时,求点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M={f(x)|x∈(0,+∞),f(x)=f(
1
x
)}

(1)已知函数f(x)=
x
1+x2
(x>0)
,求证:f(x)∈M;
(2)对于(1)中的函数f(x),求证:存在定义域为[2,+∞)的函数g(x),使得g(x+
1
x
)=f(x)
对任意x>0成立.
(3)对于任意f(x)∈M,求证:存在定义域为[2,+∞)的函数g(x),使得等式g(x+
1
x
)=f(x)
对任意x>0成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数T使得对任意的x∈M(M⊆D),有x+T∈D,且f(x+T)≥f(x),则称函数f(x)为M上的T高调函数.
(1)现给出下列命题:
①函数f(x)=log
1
2
x为(0,+∞)上的T高调函数;
②函数f(x)=sinx为R上的2π高调函数;
③如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞).其中正确命题的序号是
 

(2)如果定义域为R的函数f(x)是奇函数,当x≥0 时,f(x)=|x2-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是
 

查看答案和解析>>

同步练习册答案