精英家教网 > 高中数学 > 题目详情
1.已知三棱锥P-ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为2$\sqrt{6}$,则三棱锥P-ABC的内切球的表面积为3π.

分析 根据平面图形外接圆的半径求出三棱锥的棱长,再根据棱长求出高,设内切球的球心为O',半径为r,连接三棱锥的四个顶点得到四个小三棱锥的体积相等,然后根据等积法计算得到半径r,再由球的表面积公式计算即可得到.

解答 解:根据题意几何体为正三棱锥,如图,设棱长为a,
PD=$\frac{\sqrt{3}}{2}$a,OD=$\frac{\sqrt{3}}{6}$a,OP=$\sqrt{P{D}^{2}-O{D}^{2}}$=$\frac{\sqrt{6}}{3}$a.
则OD+PD=$\frac{\sqrt{3}}{6}$a+$\frac{\sqrt{3}}{2}$a=$\frac{2\sqrt{3}}{3}$a=2$\sqrt{6}$⇒a=3$\sqrt{2}$,
V棱锥=$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$a2×$\frac{\sqrt{6}}{3}$a=9,
设内切球的球心为O',半径为r,
连接三棱锥的四个顶点得到四个小三棱锥的体积相等,
即为4×$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$a2r=$\frac{\sqrt{3}}{3}$×18r=6$\sqrt{3}$r.
由等积法,可得,9=6$\sqrt{3}$r,
解得,r=$\frac{\sqrt{3}}{2}$.
则内切球的表面积为S=4πr2=3π.
故答案为:3π.

点评 本题主要考查球的表面积的求法,考查等积法的运用,考查三棱锥的体积公式的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lnx,g(x)=$\frac{a}{x}$,F(x)=f(x)+g(x).
(1)当a<0时,求函数F(x)的单调区间;
(2)若函数F(x)在区间[1,e]上的最小值是$\frac{3}{2}$,求a的值;
(3)设A(x1,y1),B(x2,y2)是函数f(x)图象上任意不同的两点,线段AB的中点为C(x0,y0),直线AB的斜率为k,证明:k>f′(x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.关于x的一元二次不等式ax2+(a+b)x+b>0的解集为(-2,-1).
(1)求a,b满足的关系式;
(2)解关于x不等式(bx-2)(x-a)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的不等式|3x-a+5|<|2a+1|,a∈R,
(1)当a=1时解不等式;
(2)若x=$\frac{a}{3}$是不等式的一个解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x、y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+2y≤3}\\{x-2y≤1}\end{array}\right.$,则z=x+6y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.三棱锥S-ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=$\sqrt{13}$,SB=$\sqrt{29}$,
(1)证明:SC⊥BC;
(2)求三棱锥的体积VS-ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(Ⅰ)若PA=PD,求证:平面PQB⊥平面PAD;
(Ⅱ)点M在线段PC上,二面角M-BQ-C为60°,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求三棱锥M-BCQ的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线两条渐近线的夹角为60°,该双曲线的离心率为(  )
A.$\frac{2}{3}\sqrt{3}$或2B.$\frac{2}{3}\sqrt{3}$或$\sqrt{2}$C.$\sqrt{3}$或2D.$\sqrt{3}$或$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a>0,b>0,2c>a+b,求证:
(1)c2>ab;
(2)c-$\sqrt{{c}^{2}-ab}$<a<c+$\sqrt{{c}^{2}-ab}$.

查看答案和解析>>

同步练习册答案