精英家教网 > 高中数学 > 题目详情
在一次人才招聘会上,A、B两家公司分别开出了工资标准,
A公司B公司
第一年月工资为1 500元,以后每一年月工资比上一年月工资增加230元第一年月工资为2 000元,以后每一年月工资比上一年月工资增加5%
大学生王明被A、B两家公司同时录取,而王明只想选择一家连续工作10年,经过一番思考,他选择了A公司,你知道为什么吗?
考点:数列的应用
专题:等差数列与等比数列
分析:分别构造等差、等比数列,求出各自的前10项和即可.
解答: 解:如下表
A公司B公司
第一年月工资为1 500元,以后每一年月工资比上一年月工资增加230元第一年月工资为2 000元,以后每一年月工资比上一年月工资增加5%
王明的选择过程第n年月工资为an第n年月工资为bn
首项为1 500,公差为230的等差数列首项为2 000,公比为(1+5%)的等比数列
an=230n+1 270bn=2 000(1+5%)n-1
S10=12(a1+a2+…+a10)=12×[10×1 500+
10×(10-1)
2
×230]=304 200(元)
T10=12(b1+b2+…+b10)=12×
2000(1-1.0510)
1-1.05

≈301 869(元)
结论显然S10>T10,故王明选择了A公司
点评:本题考查等差、等比数列的前n项求和,及逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠BAD=∠ABC=90°,PA=AD=2,AB=BC=1.试问在线段PA上是否存在一点M到平面PCD的距离为
3
3
?若存在,试确定M点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin
x
2
sin(
π
3
-
x
2
)的最大值等于(  )
A、
1
2
B、
3
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.设直线PQ过点T(5,-2),则以PQ为底边的等腰三角形APQ个数为 (  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=2,Sn为数列{an}的前n项和,且Sn=nan-(n2-n)
(1)求{an}通项公式.
(2)若数列{an}满足bn+1-bn=2an+3,且b1=3,{
1
bn
}的前n项和Tn,试证明Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

某城区2010年底居民住房面积为a m2,其中危旧住房占
1
3
,新型住房占
1
4
,为了加快住房建设,计划用10年时间全部拆除危旧住房(每年拆除的数量相同),且从2011年起,居民住房只建新型住房,使新型住房面积每年比上一年增加20%.以2011年为第一年,设第n年底该城区的居民住房总面积为an,写出a1,a2,a3的表达式,并归纳出数列{an}的通项公式(不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-2
3
sin2x+sin2x+
3

(Ⅰ)求函数f(x)的最小正周期和单调增区间;
(Ⅱ)求函数f(x)在[-
π
2
,0]
上的最值及取得最值时自变量x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

诺贝尔奖发放方式为:每年一发,把奖金总额平均分成6份,奖励给分别在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息作基金总额,以便保证奖金数逐年增加,假设基金平均年利率为r=6.24%,资料显示:2003年诺贝尔奖发放后基金总额约为19800万美元,设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(2003年记为f(1),2004年记为f(2),…,依此类推).
(1)用f(1)表示f(2)和f(3),并根据所求结果归纳出函数f(x)的表达式;
(2)试根据f(x)的表达式判断网上一则新闻“2013年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由(参考数据:1.03129≈1.32)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,多面体ABC-A1B1C1中,三角形ABC是边长为4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4.
(1)若O是AB的中点,求证:OC1⊥A1B;
(2)在线段AB1上是否存在一点D,使得CD∥平面A1B1C1,若存在确定D的位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案