精英家教网 > 高中数学 > 题目详情
函数f(x)=2sin
x
2
sin(
π
3
-
x
2
)的最大值等于(  )
A、
1
2
B、
3
2
C、1
D、2
考点:三角函数中的恒等变换应用,正弦函数的图象
专题:三角函数的求值,三角函数的图像与性质
分析:首先通过三角恒等变换把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质求出函数的值域.
解答: 解:f(x)=2sin
x
2
sin(
π
3
-
x
2

=2sin
x
2
(
3
2
cos
x
2
-
1
2
sin
x
2
)

=
3
sin
x
2
cos
x
2
-sin2
x
2

=
3
2
sinx-
1-cosx
2

=sin(x+
π
6
)-
1
2

当x+
π
6
=2kπ+
π
2
时,即x=2kπ+
π
3
时,函数f(x)max=
1
2

故选:A
点评:本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,函数的值域的应用,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在棱长为2的正方体ABCD-A1B1C1D1中,正方形BCC1B1所在平面内的动点P到直线D1C1DC的距离之和为2
2
,∠CPC1=60°,则点P到直线CC1的距离为(  )
A、
3
3
B、
3
2
C、
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O,A,B是平面上的三个点,直线AB上有一点C,满足2
AC
+
CB
=0,若
OA
=a,
OB
=b,则
OC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1,F
为右焦点,A为长轴的左端点,P点为该椭圆上的动点,则能够使
PA
PF
=0
的P点的个数为(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=a,点A1在底面ABC上的射影恰为AC的中点D,A1D∩AC1=M,BA1⊥AC1
(Ⅰ)试问在线段AB是否存在一点N,使得MN∥平面BB1C1C,若存在,指出N点位置,并证明你的结论;若不存在,说明理由;
(Ⅱ)求点C1到平面A1ABB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)求函数f(x)的极值
(2)设g(x)=
1+x
a(1-x)
[xf(x)-1],若对任意x∈(0,1)恒有g(x)<-2求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角梯形ABCD中,AD∥BC,AD=AB=
1
2
BC=2,∠ABC=90°,△PAB是等边三角形,平面PAB⊥平面ABCD.
(1)求二面角P-CD-B的余弦值;
(2)求B到平面PDC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次人才招聘会上,A、B两家公司分别开出了工资标准,
A公司B公司
第一年月工资为1 500元,以后每一年月工资比上一年月工资增加230元第一年月工资为2 000元,以后每一年月工资比上一年月工资增加5%
大学生王明被A、B两家公司同时录取,而王明只想选择一家连续工作10年,经过一番思考,他选择了A公司,你知道为什么吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形的三条边分别为a,b,c,若(b2-c2)[a2-(b2+c2)]=0,请判断该三角形的形状.

查看答案和解析>>

同步练习册答案