精英家教网 > 高中数学 > 题目详情
在底面是菱形的四棱锥S-ABCD中,SA=SC=2a,SB=SD=
2
a,E是SC上的一点且SE=λa(0<λ≤a),求证:对任意λ∈(0,a],都有BD⊥AE.
考点:直线与平面垂直的性质
专题:空间位置关系与距离
分析:连结BD,AC交与点O,连结SO,由四边形ABCD为菱形,推断出O为AC,BD的中点,又SA=SC,SB=SD可知SO⊥AC,SO⊥BD,利用线面垂直的判定定理推断出SO⊥平面ABCD,进而利用线面垂直的性质推断出BD⊥SO,又BD⊥AC利用线面垂直的判定定理可知BD⊥平面SAC,进而根据线面垂直的性质可知BD⊥AE.
解答: 证明:连结BD,AC交与点O,连结SO,
∵四边形ABCD为菱形,
∴O为AC,BD的中点
∵SA=SC,SB=SD
∴SO⊥AC,SO⊥BD,
∵AC∩BD=O,AC?平面ABCD,BD?平面ABCD,
∴SO⊥平面ABCD,
∵BD?平面ABCD,
∴BD⊥SO,
∵BD⊥AC,AC∩SO=O,AC?平面SAC,SO?平面SAC,
∴BD⊥平面SAC,
又对任意λ∈(0,a],AE?平面SAC,
∴BD⊥AE.
点评:本题主要考查了线面垂直的判定定理和性质的应用.考查了学生对基础定理和性质的理解和记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点(a,b)在直线2x-y+3=0的右下方,则(  )
A、2a-b+3<0
B、2a-b+3>0
C、2a-b+3=0
D、以上都不成立

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)满足f(-sinx)+3f(sinx)=4sinx•cosx(|x|≤
π
2
).
(1)求f(x)的解析式;
(2)求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:△ABC中,D是AB上一点,且AB=3AD,∠B=75°,∠CDB=60°,求证:△ABC∽△CBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为坐标原点,A、B、C三点满足
OC
=-
OA
+2
OB

(1)试用
AB
表示
AC

(2)已知A(1,cosx),B(1+sinx,cosx),x∈[0,
π
2
],f(x)=
OA
OC
-2(m2+1)|
AB
|的最小值为
1
2
,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别是a、b、c,且
sinA
a
=
cosB
b
=
cosC
c
,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A=
3   2
2   1
的逆矩阵B=
10
11

(Ⅰ)求矩阵A的逆矩阵;
(Ⅱ)若矩阵X满足AX=B,求矩阵X.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinx+cosx=-
1
5
(0<x<π),求tanx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过点A(1,-2)和B(3,4).
(1)求AB的中点C的坐标;
(2)求直线l的斜率;
(3)求经过点C且垂直于直线l的直线方程.

查看答案和解析>>

同步练习册答案