精英家教网 > 高中数学 > 题目详情
8.若tanα=$\frac{1}{3}$,则cos($\frac{π}{2}$+2α)=(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 利用诱导公式,同角三角函数基本关系式,二倍角的正弦函数公式化简所求,即可计算得解.

解答 解:∵tanα=$\frac{1}{3}$,
∴cos($\frac{π}{2}$+2α)=-sin2α=$\frac{-2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{-2tanα}{ta{n}^{2}α+1}$=-$\frac{3}{5}$.  
故选:B.

点评 本题主要考查了诱导公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设数列{an}的各项都为正数,其前n项和为Sn
已知对任意n∈N,Sn是an2和an的等差中项.
(I)求数列{an}的通项公式an
(Ⅱ)令cn=$\frac{1}{{a}_{n+1}^{2}-1}$,求{cn}的前n项和Wn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).
参考上述解法,若关于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为(-2,-$\frac{1}{3}$)∪($\frac{1}{2}$,1),则关于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集为(-3,$-\frac{1}{2}$)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在三棱锥D-ABC中,已知AB=AD=2,BC=1,$\overrightarrow{AC}•\overrightarrow{BD}=-3$,则CD=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在四棱锥P-ABCD中,平面四边形ABCD中AD∥BC,∠BAD为二面角B-PA-D一个平面角.
(1)若四边形ABCD是菱形,求证:BD⊥平面PAC;
(2)若四边形ABCD是梯形,且平面PAB∩平面PCD=l,问:直线l能否与平面ABCD平行?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.第31届夏季奥林匹克运动会将于2016年8月5日-21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
第30届伦敦第29届北京第28届雅典第27届悉尼第26届亚特兰大
中国3851322816
俄罗斯2423273226
(Ⅰ)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(Ⅱ)下表是近五届奥运会中国代表团获得的金牌数之和y(从第26届算起,不包括之前已获得的金牌数)随时间x变化的数据:
时间x(届)2627282930
金牌数之和y(枚)164476127165
作出散点图如图1:

(i)由图可以看出,金牌数之和y与时间x之间存在线性相关关系,请求出y关于x的线性回归方程;
(ii)利用(i)中的回归方程,预测今年中国代表团获得的金牌数.
参考数据:$\overline{x}$=28,$\overline{y}$=85.6,$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)=381,$\sum_{i=1}^{n}$(xi-$\overline{x}$)2=10
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=bx+a的斜率和截距的最小二乘估计分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x,y满足$\left\{\begin{array}{l}{(x-y)(x+y-1)≥0}\\{0≤x≤1}\end{array}\right.$,则2x+y的取值范围为[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,点D在边BC上,BD=2,BA=3,AD=$\sqrt{7}$,∠C=45°.
(1)求∠B的大小;
(2)求△ABD的面积及边AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若x,y满足$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ x-3y+3≥0\end{array}\right.$,则z=x+2y的最小值为(  )
A.8B.7C.2D.1

查看答案和解析>>

同步练习册答案