分析 根据不等式的新解法,进行类比求解即可.
解答 解:由$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为(-2,-$\frac{1}{3}$)∪($\frac{1}{2}$,1),
得$\frac{k}{\frac{1}{x}+a}$+$\frac{\frac{1}{x}+b}{\frac{1}{x}+c}$<0,即$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0,
由-2<$\frac{1}{x}$<-$\frac{1}{3}$或$\frac{1}{2}$<$\frac{1}{x}$<1,
得-3<x<$-\frac{1}{2}$或1<x<2,
即不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集为(-3,$-\frac{1}{2}$)∪(1,2),
故答案为:(-3,$-\frac{1}{2}$)∪(1,2)
点评 本题主要考查不等式的求解,利用不等式的新解法,利用类比法是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-$\sqrt{3}$i | B. | 1 | C. | $\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i | D. | $\frac{\sqrt{3}}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 2 | C. | 2$\sqrt{2}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{4}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com