精英家教网 > 高中数学 > 题目详情
9.若a>b,c>d,则下面不等式中成立的一个是(  )
A.a+d>b+cB.ac>bdC.ac2>bc2D.d-a<c-b

分析 本题是选择题,可采用逐一检验,利用特殊值法进行检验,很快问题得以解决.

解答 解:∵a>b,c>d,
∴设a=1,b=-1,c=-2,d=-5,
选项A,1+(-5)>-1+(-2),不成立,
选项B,1×(-2)>(-1)×(-5),不成立,
取选项C,c=0时,不成立,
故选:D.

点评 本题主要考查了基本不等式,基本不等式在考纲中是C级要求,本题属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(-1,2),解关于x的不等式ax2-bx+c>0”,给出如下一种解法:由ax2+bx+c>0的解集为(-1,2),得a(-x)2+b(-x)+c>0的解集为(-2,1),即关于x的不等式ax2-bx+c>0的解集为(-2,1).
参考上述解法,若关于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集为(-2,-$\frac{1}{3}$)∪($\frac{1}{2}$,1),则关于x的不等式$\frac{kx}{ax+1}$+$\frac{bx+1}{cx+1}$<0的解集为(-3,$-\frac{1}{2}$)∪(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若x,y满足$\left\{\begin{array}{l}{(x-y)(x+y-1)≥0}\\{0≤x≤1}\end{array}\right.$,则2x+y的取值范围为[0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,点D在边BC上,BD=2,BA=3,AD=$\sqrt{7}$,∠C=45°.
(1)求∠B的大小;
(2)求△ABD的面积及边AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四条直线,倾斜角最大的是(  )
A.y=-x+1B.y=x+1C.y=2x+1D.x=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若数列{an}的前n项和Sn=2an-1,则S6=63.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin2x+cos2x
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值及f(x)取最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若x,y满足$\left\{\begin{array}{l}x+y-1≥0\\ x-y-1≤0\\ x-3y+3≥0\end{array}\right.$,则z=x+2y的最小值为(  )
A.8B.7C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题中正确的个数是(  )
(1)若a,b,c成等差数列,则a2,b2,c2一定成等差数列;
(2)若a,b,c成等差数列,则2a,2b,2c可能成等差数列;
(3)若a,b,c成等差数列,则ka+2,kb+2,kc+2一定成等差数列;
(4)若a,b,c成等差数列,则$\frac{1}{a}$,$\frac{1}{b}$,$\frac{1}{c}$可能成等差数列.
A.4个B.3个C.2个D.1个

查看答案和解析>>

同步练习册答案