精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人沿同一方向去C地,途中都使用两种不同的速度.甲一半路程使用速度,另一半路程使用速度,乙一半时间使用速度,另一半时间使用速度,甲、乙两人从A地到C地的路程与时间的函数图象及关系,有下面图中4个不同的图示分析(其中横轴表示时间,纵轴表示路程),其中正确的图示分析为( ).

(1) (2) (3) (4)

A.(1)B.(3)C.(1)或(4)D.(1)或(2)

【答案】C

【解析】

甲一半路程使用速度v1,另一半路程使用速度v2,因为v1<v2,所以用速度v1走一半路程所用时间大于总时间的一半,同时,乙一半时间使用速度v1,另一半时间使用速度v2,在t1时间里所走的路程小于总路程是一半.

根据题意,设A到C地路程为2S,到B地路程为S,

从A到C地,甲用的时间为

乙用的时间为

分析可得t1>t2,即乙比甲先到B地,进而可排除图(2)、(3);

当甲前一半路程速度为V1,后一半路程为V2时,因为v1<v2,所以走前一半路程所用时间大于 ,图(4)正确,

当甲前一半路程速度为V2,后一半路程为V1时,因为v1<v2,所以走一半路程所用时间小于图(1)正确,

再验证乙的情况,可知图(1)、(4)也符合;故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若 ,求的值;

(Ⅱ)讨论函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc的三边长,直线l的方程,圆.

1)若为直角三角形,c为斜边长,且直线l与圆M相切,求c的值;

2)若为正三角形,对于直线l上任意一点P,在圆M上总存在一点Q,使得线段的长度为整数,求c的取值范围;

3)点,设EFGH四点到直线l的距离之和为S,求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来.随着计划生育政策效果的逐步显现以及老龄化的加剧,我国经济发展的“人口红利”在逐渐消退,在当前形势下,很多二线城市开始了抢人大战”,自2018年起,像西安、南京等二线城市人才引进与落户等政策放宽力度空前,至2019年发布各种人才引进与落户等政策的城市已经有16个。某二线城市与2018年初制定人才引进与落户新政(即放宽政策,以下简称新政):硕士研究生及以上可直接落户并享有当地政府依法给与的住房补贴,本科学历毕业生可以直接落户,专科学历毕业生在当地工作两年以上可以落户。高中及以下学历人员在当地工作10年以上可以落户。新政执行一年,2018年全年新增落户人口较2017年全年增加了一倍,为了深入了解新增落户人口结构及变化情况,相关部门统计了该市新政执行前一年(即2017年)与新政执行一年(即2018年)新增落户人口学历构成比例,得到如下饼图:

则下面结论中错误的是(

A. 新政实施后,新增落户人员中本科生已经超过半数

B. 新政实施后,高中及以下学历人员新增落户人口减少

C. 新政对硕士研究生及以上的新增落户人口数量暂时未产生影响

D. 新政对专科生在该市落实起到了积极的影响

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构为了了解不同年龄的人对一款智能家电的评价,随机选取了50名购买该家电的消费者,让他们根据实际使用体验进行评分.

(Ⅰ)设消费者的年龄为,对该款智能家电的评分为.若根据统计数据,用最小二乘法得到关于的线性回归方程为,且年龄的方差为,评分的方差为.求的相关系数,并据此判断对该款智能家电的评分与年龄的相关性强弱.

(Ⅱ)按照一定的标准,将50名消费者的年龄划分为“青年”和“中老年”,评分划分为“好评”和“差评”,整理得到如下数据,请判断是否有的把握认为对该智能家电的评价与年龄有关.

好评

差评

青年

8

16

中老年

20

6

附:线性回归直线的斜率;相关系数,独立性检验中的,其中.

临界值表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年1月4日,据“央视财经”微信公众号消息,点外卖已成为众多消费者一大常规的就餐形式,外卖员也成为了一种职业.为调查某外卖平台外卖员的送餐收入,现从该平台随机抽取100名点外卖的用户进行统计,按送餐距离分类统计得如下频率分布直方图:

将上述调查所得到的频率视为概率.

(1)求的值,并估计利用该外卖平台点外卖用户的平均送餐距离;

(2)若该外卖平台给外卖员的送餐费用与送餐距离有关,规定2千米内为短距离,每份3元,2千米到4千米为中距离,每份5元,超过4千米为远距离,每份9元.

(i)记为外卖员送一份外卖的牧入(单位:元),求的分布列和数学期望;

(ii)若外卖员一天的收入不低于150元,试利用上述数据估计该外卖员一天的送餐距离至少为多少千米?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处切线的斜率为,求此切线方程

(2)若有两个极值点,求的取值范围,并证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四边形ABED中,AB//DE,ABBE,点C在AB上,且ABCD,AC=BC=CD=2,现将△ACD沿CD折起,使点A到达点P的位置,且PE.

(1)求证:平面PBC 平面DEBC;

(2)求三棱锥P-EBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一所学校计划举办“国学”系列讲座.由于条件限制,按男、女生比例采用分层抽样的方法,从某班选出10人参加活动.在活动前对所选的10名同学进行了国学素养测试,这10名同学的性别和测试成绩(百分制)的茎叶图如图.

1)根据这10名同学的测试成绩,估计该班男、女生国学素养测试的平均成绩;

2)若成绩大于等于75分为优良,从这10名同学中随机选取2名男生,2名女生,求这4名同学的国学素养测试成绩均为优良的概率.

查看答案和解析>>

同步练习册答案