精英家教网 > 高中数学 > 题目详情
9.设i为虚数单位,则复数$\frac{3+2i}{i-1}$的虚部是(  )
A.$-\frac{5}{2}i$B.$-\frac{5}{2}$C.$-\frac{1}{2}i$D.$-\frac{1}{2}$

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:∵$\frac{3+2i}{i-1}$=$\frac{(3+2i)(-1-i)}{(-1+i)(-1-i)}=\frac{-1-5i}{2}=-\frac{1}{2}-\frac{5}{2}i$,
∴复数$\frac{3+2i}{i-1}$的虚部是$-\frac{5}{2}$.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<3)的左右焦点分别为E,F,过点F作直线交椭圆C于A,B两点,若$\overrightarrow{AF}=2\overrightarrow{FB}$且$\overrightarrow{AE}•\overrightarrow{AB}=0$
(1)求椭圆C的方程;
(2)已知点O为原点,圆D:(x-3)2+y2=r2(r>0)与椭圆C交于M,N两点,点P为椭圆C上一动点,若直线PM,PN与x轴分别交于点R,S,求证:|OR|•|OS|为常数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知动圆C过点F(1,0),且与直线x=-1相切.
(Ⅰ)求动圆圆心C的轨迹方程;并求当圆C的面积最小时的圆C1的方程;
(Ⅱ)设动圆圆心C的轨迹曲线E,直线y=$\frac{1}{2}$x+b与圆C1和曲线E交于四个不同点,从左到右依次为A,B,C,D,且B,D是直线与曲线E的交点,若直线BF,DF的倾斜角互补,求|AB|+|CD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)求与双曲线$\frac{x^2}{9}-\frac{y^2}{4}=1$共渐近线,且过点(3,4)的双曲线的标准方程;
(2)过椭圆$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右焦点的直线$x+y-\sqrt{3}=0$交M于A,B两点,O为坐标原点,P为AB的中点,且OP的斜率为$\frac{1}{2}$,求椭圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A、B、C所对的边分别为a、b、c,若b=1,$\frac{1}{2}sinB=cos({B+C})sinC$,则当角B取最大值时,△ABC的周长为(  )
A.3B.$2+\sqrt{2}$C.$2+\sqrt{3}$D.$3+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若关于x的不等式xex-ax+a<0的解集为(m,n)(n<0),且(m,n)中只有一个整数,则实数a的取值范围是(  )
A.$(\frac{2}{{3{e^2}}},\frac{1}{e})$B.$[\frac{2}{{3{e^2}}},\frac{1}{e})$C.$(\frac{2}{{3{e^2}}},\frac{1}{2e})$D.$[\frac{2}{{3{e^2}}},\frac{1}{2e})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-2|
(1)解不等式:f(x+1)+f(x+3)<4;
(2)已知a>2,求证:?x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知实数a为常数,函数f(x)=a•4x-2x+1.
(1)已知a=$\frac{1}{2}$,求函数f(x)的值域;
(2)如果函数y=f(x)在(0,1)内有唯一零点,求实数a的范围;
(3)若函数f(x)是减函数,求证:a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在扇形AOB中,∠AOB=2,且弦AB=2,则扇形AOB的面积为(  )
A.$\frac{2}{sin2}$B.$\frac{1}{si{n}^{2}1}$C.$\frac{1}{2si{n}^{2}2}$D.2sin1

查看答案和解析>>

同步练习册答案