精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=|x-2|
(1)解不等式:f(x+1)+f(x+3)<4;
(2)已知a>2,求证:?x∈R,f(ax)+af(x)>2恒成立.

分析 (1)利用绝对值化简不等式,通过x的范围,推出多项式不等式,求解即可.
(2)利用绝对值的几何意义,转化求解最值即可.

解答 解:(1)函数f(x)=|x-2|,
f(x+1)+f(x+3)<4,即|x-1|+|x|<4,
①当x≤0时,不等式为1-x-x<4,即$x>-\frac{3}{2}$,∴$-\frac{3}{2}<x≤0$是不等式的解;
②当0<x≤1时,不等式1-x+x<4,即1<4恒成立,∴0<x≤1是不等式的解;
③当x>1时,不等式为x-1+x<4,即$x<\frac{5}{2}$,∴$1<x<\frac{5}{2}$是不等式的解,
综上所述,不等式的解集为$1<x<\frac{5}{2}$.
(2)证明:∵a>2,
∴f(ax)+af(x)=|ax-2|+a|x-2|=|ax-2|+|ax-2a|=|ax-2|+|2a-ax|≥|ax-2+2a-ax|=|2a-2|>2
∴?x∈R,f(ax)+af(x)>2恒成立.

点评 本题考查绝对值的几何意义,不等式的解法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,PA⊥底面ABCD,且PA=AB=AC=2,$BC=2\sqrt{2}$.
(Ⅰ)求证:平面PCD⊥平面PAC;
(Ⅱ)如果M是棱PD上的点,N是棱AB上一点,AN=2NB,且三棱锥N-BMC的体积为$\frac{1}{6}$,求$\frac{PM}{MD}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p:方程$\frac{x^2}{m}+\frac{y^2}{4-m}=1$表示焦点在x轴上的椭圆,命题q:(m-1)x2+(m-3)y2=1表示双曲线.若p∨q为真命题,则实数m的取值范围是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设i为虚数单位,则复数$\frac{3+2i}{i-1}$的虚部是(  )
A.$-\frac{5}{2}i$B.$-\frac{5}{2}$C.$-\frac{1}{2}i$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.f(x)是定义在R上函数,满足f(x)=f(-x)且x≥0时,f(x)=x3,若对任意的x∈[2t-1,2t+3],不等式f(3x-t)≥8f(x)恒成立,则实数t的取值范围是t≤-3或t≥1或t=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系中,240°角的终边与单位圆的交点坐标是(-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.求值:$\frac{cos27°-\sqrt{2}sin18°}{cos63°}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知正项数列{an}的前n项和为Sn,若数列{log${\;}_{\frac{1}{3}}$an}是公差为-1的等差数列,且a2+2是a1,a3的等差中项.
(1)证明数列{an}是等比数列,并求数列{an}的通项公式;
(2)若Tn是数列{$\frac{1}{{a}_{n}}$}的前n项和,若Tn<M恒成立,求实数M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若一条直线过A(1,3)、B(2,5)两点,则此直线的斜率为(  )
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案