精英家教网 > 高中数学 > 题目详情
12.已知命题p:方程$\frac{x^2}{m}+\frac{y^2}{4-m}=1$表示焦点在x轴上的椭圆,命题q:(m-1)x2+(m-3)y2=1表示双曲线.若p∨q为真命题,则实数m的取值范围是(1,4).

分析 利用椭圆与双曲线的标准方程、简易逻辑的判定方法即可得出.

解答 解:命题p:方程$\frac{x^2}{m}+\frac{y^2}{4-m}=1$表示焦点在x轴上的椭圆,∴m>4-m>0,m≠4-m,解得2<m<4.
命题q:(m-1)x2+(m-3)y2=1表示双曲线.∴(m-1)(m-3)<0,解得1<m<3.
若p∨q为真命题,则2<m<4或1<m<3.
则实数m的取值范围是(1,4).
故答案为:(1,4).

点评 本题考查了椭圆与双曲线的标准方程、简易逻辑的判定方法、不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow b$=(x,-2),若$\overrightarrow a$与$\overrightarrow b$共线,则x的值为(  )
A.-4B.4C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,抛物线C:y2=2px(p>0)的焦点为F,过点F且斜率存在的直线l交抛物线C于A,B两点,已知当直线l的斜率为1时,|AB|=8.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点A作抛物线C的切线交直线x=$\frac{p}{2}$于点D,试问:是否存在定点M在以AD为直径的圆上?若存在,求点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知动圆C过点F(1,0),且与直线x=-1相切.
(Ⅰ)求动圆圆心C的轨迹方程;并求当圆C的面积最小时的圆C1的方程;
(Ⅱ)设动圆圆心C的轨迹曲线E,直线y=$\frac{1}{2}$x+b与圆C1和曲线E交于四个不同点,从左到右依次为A,B,C,D,且B,D是直线与曲线E的交点,若直线BF,DF的倾斜角互补,求|AB|+|CD|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P是椭圆$\frac{x^2}{4}+{y^2}=1$上的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于$\sqrt{3}$,则这样的点P的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)求与双曲线$\frac{x^2}{9}-\frac{y^2}{4}=1$共渐近线,且过点(3,4)的双曲线的标准方程;
(2)过椭圆$M:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右焦点的直线$x+y-\sqrt{3}=0$交M于A,B两点,O为坐标原点,P为AB的中点,且OP的斜率为$\frac{1}{2}$,求椭圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A、B、C所对的边分别为a、b、c,若b=1,$\frac{1}{2}sinB=cos({B+C})sinC$,则当角B取最大值时,△ABC的周长为(  )
A.3B.$2+\sqrt{2}$C.$2+\sqrt{3}$D.$3+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x-2|
(1)解不等式:f(x+1)+f(x+3)<4;
(2)已知a>2,求证:?x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.与椭圆$C:\frac{x^2}{9}+\frac{y^2}{5}=1$共焦点且过点$P(3,\sqrt{2})$的双曲线方程为(  )
A.${x^2}-\frac{y^2}{3}=1$B.$\frac{x^2}{3}-{y^2}=1$C.$\frac{x^2}{2}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{2}=1$

查看答案和解析>>

同步练习册答案