精英家教网 > 高中数学 > 题目详情
7.已知点P是椭圆$\frac{x^2}{4}+{y^2}=1$上的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于$\sqrt{3}$,则这样的点P的个数为(  )
A.1B.2C.3D.4

分析 求出椭圆的焦距,利用三角形面积求出三角形的高,求出椭圆的短半轴的长,推出结果即可.

解答 解:椭圆$\frac{x^2}{4}+{y^2}=1$可得b=1,c=$\sqrt{3}$,点P及焦点F1,F2为顶点的三角形的面积等于$\sqrt{3}$,
可得$\sqrt{3}=\frac{1}{2}×2\sqrt{3}×h$,解得h=1=b,
所以这样的三角形只有2个.
故选:B.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)0$\sqrt{2}$-$\sqrt{2}$0
(Ⅰ)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{2}$,0]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,在三棱锥A-BCD中,A在平面BCD内的投影恰为BD的中点,CD⊥BD,AD⊥AB,延长DA至P,使DA=AP.
(1)求证:PB⊥平面BCD;
(2)若$BD=CD=\sqrt{2}$,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.将y=$\sqrt{2}$sin(2x+$\frac{π}{3}$)的图象向右平移φ(0<φ<π)个单位得到函数y=2sinx(sinx-cosx)-1的图象,则φ=$\frac{13π}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=a-x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则实数a的取值范围是(  )
A.[-2,-1]B.[-1,1]C.[1,3]D.[3,+∞]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p:方程$\frac{x^2}{m}+\frac{y^2}{4-m}=1$表示焦点在x轴上的椭圆,命题q:(m-1)x2+(m-3)y2=1表示双曲线.若p∨q为真命题,则实数m的取值范围是(1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“$?{x_0}∈R,x_0^2+{x_0}+1<0$”的否定是“?x∈R,x2+x+1<0”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.f(x)是定义在R上函数,满足f(x)=f(-x)且x≥0时,f(x)=x3,若对任意的x∈[2t-1,2t+3],不等式f(3x-t)≥8f(x)恒成立,则实数t的取值范围是t≤-3或t≥1或t=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、…、《辑古算经》等算经十书,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部名著中选择2部作为“数学文化”校本课程学习内容,则所选2部名著中至少有一部是魏晋南北朝时期的名著的概率为$\frac{14}{15}$.

查看答案和解析>>

同步练习册答案