精英家教网 > 高中数学 > 题目详情
7.平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿BD将四边形折成直二面角A-BD-C,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=8,则三棱锥A-BCD的外接球的表面积为8π.

分析 由已知中$\overrightarrow{AB}$•$\overrightarrow{BD}$=0可得AB⊥BD,沿BD折起后,由平面ABD⊥平面BDC,可得三棱锥A-BCD的外接球的直径为AC,进而根据2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=8,求出三棱锥A-BCD的外接球的半径,可得三棱锥A-BCD的外接球的表面积.

解答 解:平行四边形ABCD中,
∵$\overrightarrow{AB}$•$\overrightarrow{BD}$=0
∴AB⊥BD,
沿BD折成直二面角A-BD-C,
∵平面ABD⊥平面BDC
三棱锥A-BCD的外接球的直径为AC,
∴AC2=AB2+BD2+CD2=2AB2+BD2=8
∴外接球的半径为$\sqrt{2}$,
故表面积是8π.
故答案为:8π.

点评 本题考查的知识点是球内接多面体,平面向量数量积的运算,其中根据已知求出三棱锥A-BCD的外接球的半径是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知球O的内接圆柱的轴截面是边长为2的正方形,则球O的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设直线l1:mx-(m-1)y-1=0(m∈R),则直线l1恒过定点(1,1);若直线l1为圆x2+y2+2y-3=0的一条对称轴,则实数m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列说法中:
①两个有共同起点且相等的向量,其终点一定相同;
②若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则|$\overrightarrow{a}$=$\overrightarrow{b}$;
③若非零向量$\overrightarrow{a},\overrightarrow{b}$共线,则$\overrightarrow{a}=\overrightarrow{b}$;
④向量$\overrightarrow{a}=\overrightarrow{b}$,则向量$\overrightarrow{a},\overrightarrow{b}$共线;
⑤由于零向量的方向不确定,故其不能与任何向量平行;
其中正确的序号为①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.执行下面的程序输出的结果是15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是$\frac{π}{2}$,若将f(x)的图象先向右平移$\frac{π}{6}$个单位,再向上平移$\sqrt{3}$个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;     
 (2)求f(x)的对称轴及单调区间;
(3)若对任意x∈[0,$\frac{π}{3}}$],f2(x)-(2+m)f(x)+2+m≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O点为△ABC所在平面内一点,且满足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow 0$,现将一粒质点随机撒在△ABC内,若质点落在△AOC的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用反证法证明命题“设a,b为实数,则方程x3+ax-b=0,至少有一个实根”时,要做的假设是(  )
A.方程x3+ax-b=0没有实根B.方程x3+ax-b=0至多有一个实根
C.方程x3+ax-b=0至多有两个实根D.方程x3+ax-b=0恰好有两个实根

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的60%,对教师管理水平给出好评的学生人数为总数的75%,其中对教师教学水平和教师管理水平都给出好评的有120人.
(1)填写教师教学水平和教师管理水平评价的2×2列联表:
对教师管理水平好评对教师管理水平不满意合计
对教师教学水平好评
对教师教学水平不满意
合计
问:是否可以在犯错误概率不超过0.1%的前提下,认为教师教学水平好评与教师管理水平好评有关、
(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量X;
①求对教师教学水平和教师管理水平全好评的人数X的分布列(概率用组合数算式表示);
②求X的数学期望和方差.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案