精英家教网 > 高中数学 > 题目详情
19.已知O点为△ABC所在平面内一点,且满足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow 0$,现将一粒质点随机撒在△ABC内,若质点落在△AOC的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

分析 要求该概率即求S△AOC:S△ABC=的比值.由$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow 0$,变形为,3$\overrightarrow{OD}=\overrightarrow{AB}$,得到O到AC的距离是E到AC距离的一半,B到AC的距离是O到AC距离的3倍,两三角形同底,面积之比转化为概率.

解答 解:以OB、OC为邻边作平行四边形OBDC,则$\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OD}$
∵$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow 0$,∴3$\overrightarrow{OD}=\overrightarrow{AB}$,作AB的两个三等分点E,F,则$\overrightarrow{OC}=\overrightarrow{BD}=\overrightarrow{EO}$,
∴O到AC的距离是E到AC距离的一半,B到AC的距离是O到AC距离的3倍,如图
∴S△AOC=$\frac{1}{3}$S△ABC
将一粒黄豆随机撒在△ABC内,黄豆落在△AOC内的概率为P=$\frac{{S}_{△AOC}}{{S}_{△ABC}}=\frac{1}{3}$;
故选:B.

点评 本题给出点O满足的条件,求O点落在△AOC内的概率,利用面积比求得;着重考查了平面向量加法法则、向量共线的充要条件和几何概型等知识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知直线l:mx+$\sqrt{2}$ny=2与圆O:x2+y2=1交于A、B两点,若△AOB为直角三角形,则点M(m,n)到点P(-2,0)、Q(2,0)的距离之和(  )
A.最大值为6$\sqrt{2}$B.最小值为3$\sqrt{2}$C.是一个常数4$\sqrt{3}$D.是一个常数4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2$\sqrt{2}$,BC=4$\sqrt{2}$,PA=2,点M在线段PD上.
(I)求证:AB⊥PC;
(Ⅱ)若二面角M-AC-D的余弦值为$\frac{\sqrt{5}}{5}$,求BM与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿BD将四边形折成直二面角A-BD-C,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=8,则三棱锥A-BCD的外接球的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,如果输入的x∈[-2,2],那么输出的y属于(  )
A.[5,9]B.[3,9]C.(1,9]D.(3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.(理科做)向量$\overrightarrow m$=($\sqrt{3}$sinx,cosx),$\overrightarrow n$=(2$\sqrt{3}$,1),且$\overrightarrow m$∥$\overrightarrow n$,则$\frac{{2{{cos}^2}x+sin2x}}{1+tanx}$的值为(  )
A.$\frac{8}{5}$B.$\frac{5}{8}$C.$\frac{2}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足an+1=$\frac{{(n+2)a_n^2-n{a_n}+n+1}}{a_n^2+1}$(n∈N+),且a1=1.
(1)求a2,a3,a4,猜测an,并用数学归纳法证明;
(2)若n≥4,试比较3an与(n-1)•2n+2n2的大小,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.△ABC中,a,b,c分别是角A,B,C的对边,且a=80,b=100,A=$\frac{π}{6}$,则此三角形是(  )
A.锐角三角形B.直角三角形
C.钝角三角形D.锐角或钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在多面体EF-ABCD中,ABCD,ABEF均为直角梯形,∠ABE=∠ABC=$\frac{π}{2}$,DCEF为平行四边形,平面DCEF⊥平面ABCD.
(1)求证:DF⊥平面ABCD;
(2)若△ABD是边长为2的等边三角形,且BF与平面ABCD所成角的正切值为1,求点E到平面BDF的距离.

查看答案和解析>>

同步练习册答案