| A. | 锐角三角形 | B. | 直角三角形 | ||
| C. | 钝角三角形 | D. | 锐角或钝角三角形 |
分析 由题意和正弦定理求出sinB,根据正弦函数的性质和角B的范围,对B分类讨论并画出图形,分别利用内角和定理判断出△ABC的形状.
解答
解:∵a=80,b=100,A=$\frac{π}{6}$
∴由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,则sinB=$\frac{b•sinA}{a}$=$\frac{100×\frac{1}{2}}{80}$=$\frac{5}{8}$,
∵$\frac{1}{2}<$sinB=$\frac{5}{8}$<$\frac{\sqrt{2}}{2}$,0<B<π,且b>a,
∴∠B有两解,
①当B为锐角时,则B∈($\frac{π}{6}$,$\frac{π}{4}$),
此时C=π-A-B=$\frac{5π}{6}-B$$∈(\frac{7π}{12},\frac{2π}{3})$,则C为钝角,
∴△ABC是钝角三角形,
②当B为钝角时,则B∈($\frac{3π}{4}$,$\frac{5π}{6}$),
此时C=π-A-B=$\frac{5π}{6}-B$$∈(0,\frac{π}{12})$,成立,
∴△ABC是钝角三角形,
综上可得,△ABC一定是钝角三角形,
故选:C.
点评 本题考查正弦定理的应用,以及边角关系,考查数形结合思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 方程x3+ax-b=0没有实根 | B. | 方程x3+ax-b=0至多有一个实根 | ||
| C. | 方程x3+ax-b=0至多有两个实根 | D. | 方程x3+ax-b=0恰好有两个实根 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{32π}{3}$ | B. | $\frac{32\sqrt{3}π}{3}$ | C. | $\frac{64π}{3}$ | D. | $\frac{64\sqrt{2}π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 对教师管理水平好评 | 对教师管理水平不满意 | 合计 | |
| 对教师教学水平好评 | |||
| 对教师教学水平不满意 | |||
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com