| A. | $\frac{32π}{3}$ | B. | $\frac{32\sqrt{3}π}{3}$ | C. | $\frac{64π}{3}$ | D. | $\frac{64\sqrt{2}π}{3}$ |
分析 由正三棱锥S-ABC的所有棱长均为$\frac{4\sqrt{6}}{3}$,所以此三棱锥一定可以放在棱长为$\frac{4\sqrt{3}}{3}$的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球的半径,再代入球的体积公式计算即可.
解答 解:∵正三棱锥S-ABC的所有棱长都为$\frac{4\sqrt{6}}{3}$,
∴此三棱锥一定可以放在正方体中,
∴我们可以在正方体中寻找此三棱锥.
∴正方体的棱长为$\frac{\sqrt{2}}{2}×\frac{4\sqrt{6}}{3}$=$\frac{4\sqrt{3}}{3}$,
∴此四面体的外接球即为此正方体的外接球,
∵外接球的直径为正方体的对角线长,
∴外接球的半径为R=$\frac{1}{2}$×$\sqrt{3}$×$\frac{4\sqrt{3}}{3}$=2,
∴球的体积为V=$\frac{4}{3}$πR3=$\frac{32}{3}$π,
故选:A.
点评 本题考查几何体的接体问题,考查了空间想象能力,其解答的关键是根据几何体的结构特征,求出接体几何元素的数据,代入球的体积公式分别求解.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 直角三角形 | ||
| C. | 钝角三角形 | D. | 锐角或钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -9 | B. | -1 | C. | 1 | D. | 9 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com