精英家教网 > 高中数学 > 题目详情
9.如图,在多面体EF-ABCD中,ABCD,ABEF均为直角梯形,∠ABE=∠ABC=$\frac{π}{2}$,DCEF为平行四边形,平面DCEF⊥平面ABCD.
(1)求证:DF⊥平面ABCD;
(2)若△ABD是边长为2的等边三角形,且BF与平面ABCD所成角的正切值为1,求点E到平面BDF的距离.

分析 (1)由∠ABE=∠ABC=$\frac{π}{2}$可得AB⊥平面BCE,于是EF⊥平面BCE,从而EF⊥CE,故四边形CDFE为矩形,于是D⊥CD,根据面面垂直的性质得出DF⊥平面ABCD;
(2)连接BD,DE,则∠FBD为BF与平面ABCD所成角,故而得出DF=BD=2,计算出BC,CD,根据VB-DEF=VE-BDF列方程即可得出点E到平面BDF的距离.

解答 证明:(1)∵$∠ABE=∠ABC=\frac{π}{2}$,
∴AB⊥BE,AB⊥BC,又BE?平面BCE,BC?平面BCE,BE∩BC=B,
∴AB⊥平面BCE,∵EF∥AB,
∴EF⊥平面BCE,∵CE?平面BCE,
∴EF⊥CE.又四边形CDFE是平行四边形,
∴四边形CDFE是矩形,
∴DF⊥DC.
又平面DCEF⊥平面ABCD,且平面ABCD∩平面CDFE=CD,DF?平面CDFE,
∴DF⊥平面ABCD.
(2)连接BD,DE.
∵△ABD是边长为2的等边三角形,四边形ABCD是直角梯形,∠ABC=$\frac{π}{2}$,
∴$BD=2,CD=1,BC=\sqrt{3}$.
由(1)得DF⊥平面ABCD,∴∠FBD为BF与平面ABCD所成角的角,
∴tan∠FBD=1,即DF=BD=2.
∴VB-DEF=$\frac{1}{3}{S}_{△DEF}•BC$=$\frac{1}{3}×\frac{1}{2}×1×2×\sqrt{3}$=$\frac{\sqrt{3}}{3}$.
设E到平面BDF的距离为d,则VE-BDF=$\frac{1}{3}{S}_{△BDF}•d$=$\frac{1}{3}×\frac{1}{2}×2×2×d$=$\frac{2d}{3}$
∵VB-DEF=VE-BDF,∴$\frac{2d}{3}$=$\frac{\sqrt{3}}{3}$,解得$d=\frac{{\sqrt{3}}}{2}$.

点评 本题考查了线面垂直的判定,空间距离的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知O点为△ABC所在平面内一点,且满足$\overrightarrow{OA}$+2$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow 0$,现将一粒质点随机撒在△ABC内,若质点落在△AOC的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知正三棱锥S-ABC的六条棱长都为$\frac{4\sqrt{6}}{3}$,则它的外接球的体积为(  )
A.$\frac{32π}{3}$B.$\frac{32\sqrt{3}π}{3}$C.$\frac{64π}{3}$D.$\frac{64\sqrt{2}π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的60%,对教师管理水平给出好评的学生人数为总数的75%,其中对教师教学水平和教师管理水平都给出好评的有120人.
(1)填写教师教学水平和教师管理水平评价的2×2列联表:
对教师管理水平好评对教师管理水平不满意合计
对教师教学水平好评
对教师教学水平不满意
合计
问:是否可以在犯错误概率不超过0.1%的前提下,认为教师教学水平好评与教师管理水平好评有关、
(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量X;
①求对教师教学水平和教师管理水平全好评的人数X的分布列(概率用组合数算式表示);
②求X的数学期望和方差.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某空间几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{π}{3}$B.$\frac{5π}{6}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知D、C、B三点在地面同一直线上,DC=a,从C、D两点测得A的点仰角分别为α、β(α>β),则A点离地面的高AB等于(  )
A.$\frac{asinαsinβ}{sin(α-β)}$B.$\frac{asinαsinβ}{cos(α-β)}$C.$\frac{acosαcosβ}{sin(α-β)}$D.$\frac{acosαcosβ}{cos(α-β)}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知平面α截一球面得圆M,过圆心M与α成60°二面角的平面β截该球面得圆N,若该球的表面积为64π,圆M的面积为4π,则圆N的半径为(  )
A.$\sqrt{7}$B.3C.$\sqrt{11}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.底面半径为$\sqrt{3}$,母线长为2的圆锥的外接球O的表面积为(  )
A.B.12πC.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列哪个函数是奇函数(  )
A.f(x)=3x3+2x2+1B.f(x)=${x^{-\frac{1}{2}}}$C.f(x)=3xD.f(x)=$\frac{{\sqrt{4-{x^2}}}}{{|{x+3}|-3}}$

查看答案和解析>>

同步练习册答案