精英家教网 > 高中数学 > 题目详情
3.已知三棱锥P-ABC中,PA=4,AB=AC=2$\sqrt{3}$,BC=6,PA⊥平面ABC,则此三棱锥的外接球的半径为4.

分析 设△ABC外接圆半径为r,设三棱锥P-ABC球半径为R,由正弦定理,求出r,再由勾股定理得R.

解答 解:设△ABC外接圆半径为r,设三棱锥P-ABC球半径为R,
∵底面△ABC中,AB=AC=2$\sqrt{3}$,BC=6,
∴cos∠BAC=$\frac{12+12-36}{2×2\sqrt{3}×2\sqrt{3}}$=-$\frac{1}{2}$
∴sin∠BAC=$\frac{\sqrt{3}}{2}$
∴由正弦定理,得:2r=$\frac{6}{\frac{\sqrt{3}}{2}}$=4$\sqrt{3}$,
解得r=2$\sqrt{3}$,
设球心到平面ABC的距离为d,则由勾股定理得R2=d2+(2$\sqrt{3}$)2=(2$\sqrt{3}$)2+(4-d)2
∴d=2,R=4,
∴此三棱锥的外接球的半径为4.
故答案为:4.

点评 本题考查三棱锥的外接球半径的求法,是中档题,解题时要认真审题,注意正弦定理、勾股定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知边长为3的正△ABC三个顶点都在球O的表面上,且OA与平面ABC所成的角为30°,则球O的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,如果输入的x∈[-2,2],那么输出的y属于(  )
A.[5,9]B.[3,9]C.(1,9]D.(3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足an+1=$\frac{{(n+2)a_n^2-n{a_n}+n+1}}{a_n^2+1}$(n∈N+),且a1=1.
(1)求a2,a3,a4,猜测an,并用数学归纳法证明;
(2)若n≥4,试比较3an与(n-1)•2n+2n2的大小,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.此人停留期间空气质量优良的天数只有1天的概率(  )
A.$\frac{1}{13}$B.$\frac{2}{13}$C.$\frac{3}{13}$D.$\frac{4}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.△ABC中,a,b,c分别是角A,B,C的对边,且a=80,b=100,A=$\frac{π}{6}$,则此三角形是(  )
A.锐角三角形B.直角三角形
C.钝角三角形D.锐角或钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=3上,圆弧C1的圆心是坐标原点O,半径为5,圆弧C2过点A(-1,0).
(1)求圆弧C2的方程;
(2)曲线C上是否存在点P,满足PA=$\frac{{\sqrt{2}}}{2}$PO?若存在,指出有几个这样的点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若把英语单词“book”的字母顺序写错了,则可能出现的错误共有11种(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(  )
A.60B.75C.105D.120

查看答案和解析>>

同步练习册答案