精英家教网 > 高中数学 > 题目详情
18.已知x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,则目标函数z=2x-y+3的最小值和最大值的等比中项为(  )
A.7B.±$\frac{7}{2}$C.$\sqrt{10}$D.±$\sqrt{10}$

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数求得最值,再由等比数列的性质得答案.

解答 解:由约束条件作出可行域如图,

设可行域内一点(x,y),
由图可知,直线z=2x-y+3经过D点时取到最大值,经过C点时取到最小值,
联立$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-1=0}\end{array}\right.$,解得C(0,1),
联立$\left\{\begin{array}{l}{3x-y-3=0}\\{x+y-1=0}\end{array}\right.$,解得D(1,0),
∴z的最小值为-1+3=2,最大值为2+3=5,
∴其等比中项为$±\sqrt{10}$.
故选:D.

点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列命题中,真命题的是(  )
A.若|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,则$\overrightarrow{a}$>$\overrightarrow{b}$B.坐标系中的x轴,y轴都是向量
C.向量就是有向线段D.体积,面积,时间都不是向量

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若幂函数f(x)=xa及其导函数f′(x)在区间(0,+∞)上的单调性一致(同为增函数或同为减函数),则实数a的取值范围(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.直角坐标系xoy内有点A(2,1),B(0,2),将线段AB绕直线y=1旋转一周,所得到几何体的体积为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.球O是四面体ABCD的外接球(即四面体的顶点均在球面上),若AB=CD=2$\sqrt{2}$,AD=AC=BD=BC=$\sqrt{5}$,则球O的表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,∠A=120°,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-2,则|$\overrightarrow{BC}$|的最小值是 (  )
A.2B.4C.2$\sqrt{3}$D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=3x2-2mx-1.
(1)如果不等式f(x)≥|x|-$\frac{7}{4}$对一切实数x恒成立,求实数m的取值范围;
(2)定义g(x)=$\left\{\begin{array}{l}{|f(x)|,x≥0}\\{f(x),x<0}\end{array}\right.$,求函数g(x)在[-1,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=$\left\{\begin{array}{l}{-\sqrt{x},x≥0}\\{(x-\frac{1}{x})^{4},x<0}\end{array}\right.$,则f[f(2)]=(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在正方体ABCD-A1B1C1D1中,E是棱DD1的中点.
(1)求直线BE与平面ABB1A1所成角的大小(结果用反三角函数表示)
(2)在棱C1D1上是否存在一点F,使得BF1∥平面A1BE,若存在,指明点F的位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案