精英家教网 > 高中数学 > 题目详情
19.函数f(x)=$\sqrt{1-{{log}_2}x}$的定义域为(  )
A.(0,+∞)B.(0,2)C.(2,+∞)D.(0,2]

分析 根据对数函数的性质以及二次根式的性质求出x的范围即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{1{-log}_{2}x≥0}\\{x>0}\end{array}\right.$,
解得:0<x≤2,
故选:D.

点评 本题考查了对数函数的性质以及二次根式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2bx-4a(a,b∈R),试判断f(x)是否为“局部奇函数”?并说明理由;
(2)设f(x)=2x+m是定义在[-1,2]上的“局部奇函数”,求实数m的取值范围;
(3)设f(x)=4x-m•2x+1+m2-3为定义域R上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2,点A,D分别是RB,RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连结PB,PC.
(1)求C到平面PAB的距离;
(2)求直线PC与平面ABCD成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an},满足a1=1,an+1=2an+3,则a5等于(  )
A.64B.63C.32D.61

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}f(x-3),x>0\\{2^x}+\int_0^{\frac{π}{6}}{cos3tdt,x≤0}\end{array}$,则f(2017)=$\frac{7}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设0<a<$\frac{1}{2}$,则a,a${\;}^{\sqrt{a}}}$,a${\;}^{a^a}}$的大小关系是(  )
A.$a>{a^{a^a}}>{a^{\sqrt{a}}}$B.$a>{a^{\sqrt{a}}}>{a^{a^a}}$C.${a^{a^a}}>a>{a^{\sqrt{a}}}$D.${a^{\sqrt{a}}}>{a^{a^a}}>a$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知向量$\overrightarrow{a}$=(2,x),$\overrightarrow{b}$=(-1,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x的值是(  )
A.1B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合M={y|y=x2-1,x∈R},P={y|y=2x-1,x∈R},那么集合M与P关系是(  )
A.M=PB.M?PC.M?PD.P?M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4sinxcos(x-$\frac{π}{3}$)-$\sqrt{3}$
(1)求f(x)的最小正周期;
(2)求f(x)的对称中心及单调增区间.

查看答案和解析>>

同步练习册答案